H
F/G 20/3

-

THE APPLICATION OF VECTOR DIFFRACTION
ANOMALOUS DIFFRACTION. . CUX AIR FORCE I

HRIGHT-PATTERSON AFB OH R W MAHOOD MA

UNCLASSIFIED AFIT/CI/NR-87-10@3F

% 930




‘gt h

LAY

IR ML)

»

X

A

059 0Vg 8% 0% 4% 4%, A%y B4 gV 40, %

AN

R N E, 00,600 T D T N U 0 e et

-......,..h.r AL A * 7 e '
- L \\ﬁ&\ & 5% e P A [ 'n -
[~ 30 0 A 2 BN S LR AN IR et LIP AR P A A g
m” s I LA o bl PR PANASAN ..w ......(...“.J..JM.\,

r-nt RS %Y A .

2Dl ARATY LA A ks R A XA WY :

«f%’\fN—:\f\f '\.'\*“.-“.-.-I-v j-\“( \” -\- -\f \H..n- 5 l\.. \f\f\h--ﬂv n‘} I n”'\-. 5 I\”- ., -\..\a u. S r-\”.-\a-. -.\\-..\fk. .J- -f- . .-\nc\*\

RN A Ny *l-\uu ) . A-'-)..--f’ . .-..- . WO A QAN A P -.’f}-
. p LN LR ] AL, -r.h.ﬁ IS @ ...\H..z“..w..H.H.w» .“.“..H .r. ik

.
!

20
%
ll=

4 2

m““

2333 <

EEEFRELIE:

.

———
———4
o - 0
. o~
* am—— .
— "
comr——— |I“||I\I|||.|I‘
\\.. “ r——




v

r
4
r
4
.
;
\
!
2
:

d

AD-A185 930

SECURITY CLASSIFICATION OF THIS PAGE (When Dal.‘Fnlr'.‘d). o

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFLT/CL/NR 87-103T
, Artr/et/ E_COPY.
4., TITLE (and Subtitle) 5. EPORT & PERIOD COVERED
The Application of Vector D1ffrac;10n to the . ya
THESIS/DISSE N
Scalar Anomalous Diffraction Approximation of FEEREM P
van de Hulst 6. PERFORMING OG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Robert W. Mahood

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM FLEMENT. PROJECT, TASK
) . AREA & WORK UNIT NUMBERS
AFIT STUDENT AT:

The Pennsylvania State University

1. COMTROULLING OFFICE NAME AND ADDRESS 4 12. REPORT DATE

AFLT/NR 1987

WPAFB Ol 45433-6583 13. NUMBER OF PAGES
14 MOMNITORING AGENCY NAME 8 ADDRESS(I! diiferent {rom Controlling Oflice) 15. SECURI|TY CLASS. (of this teport)

UNCLASSIFIED
15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report) S

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D ' lc

NOV 18 1987
17. DISTRIBUTION STATEMENT (of lhe abstract entered in Block 20, if dliferent from Report)

A A

18. SUPPLFMENTARY NOTES L\by,\,\
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 NN E. WOLAVER 138719

ean for Research and
Professional Development
AFIT/NR

13 '-7;, 14 WOEUS (Continue on reverse side il necessary and ldentlfy by block number)

20 AASTAACT (Contlnue on reverse side If necessary and Identily by block number)

ATTACITED

DD ", 1473 Eoition oF 1 OV 65 15 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7 10 28 167




- o

VOR TR TR TR LR PO IR PTOR R ON

The Pennsvlvania State University
The Graduate School

Department of Meteorology

The Application of Vector Diffraction to the Scalar Anomalous

Diffraction Approximation of van de Hulst

A Thesis in
Meteorology
by

Robert W. Mahood

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

May 1987

—
AZCesiurn tor

b - e Ll

NTIS Cprul
LTS Ta
Unaro, o4

)
Jiotoe oo |

t

8‘/ ] )
st

I grant The Pennsylvania State University the nonexclusive right to

use this work for the University's own purposes and to make single
copies of the work available to the public on a not-for-profit basis if
copies are not otherwise available.

AR LWL Y

L/
t)

\

NoALA

Kot & bt

Robert W. Mahood

- n) -'. -J.v“. ‘J“n"" v*‘a')..\{‘l'.\ ™ ‘1.-'-‘.\J'.wa\..‘.f.\-.',‘.\;".'.‘\'--_'.."’.’ ‘ el " .
. o o W% e 0% g a’ - 2

- 'f_'.' PP R LY




We approve the thesis of Robert W. Mahood

Date of Signature:

g Qi b

- .-

N N I ICIIIIO N IT N DN, -'_. v '-'_, e '.",' e .f:.’ AT T AT e _’_-.;‘-."-.' NS Ny

/
’ Vel
e “
AN~
e

o/ CJe 1 e
ZC/’ / r"A?l-/./()y /C/‘j)/’z_ L"/’c&,uj e P leeq

Craig F. Bohren, Professor of
Meteorologyv, Thesis Advisor

1/ M
(’ ) . ( (- R '“.’" ‘%.- “:——— L '/
/ [L"C'“[L {/'3/7 /o L L/'i'bc' L. L
John J. Olivero, Professor of
Meteorology
AR N S e I

William M. Frgnk, Associate
Professor of Meteorology, Head of
the Department of Meteorology

S A N AR AT



TR (RTAATR

d\t~ ..f -r‘.-l.'
A

R

OO .—\.—\. T R G T G L G PRI S0y
. “ AN A A ¢
- ' - -

0l 5200 a2 Aa A 02 22 AV i A e Ko 4% £'2 £°2 22 h's £V FRRE W VX RAE XN AT PN AR T

1141

ABSTRACT

- The extinction, absorption, and differential scattering cross
sections of particles are, in general, functions of the polarization
state of the incident radiation; however, this dependency cannot be
predicted by van de Hulst's anomalous diffraction approximation because
it is a scalar thecry. To overcome this deficiency, the Kirchoff and
Kirchoff-Kottler vector diffraction formulations were used to modify
anomalous diffraction in the hope that polarization effects could then
be accounted for. Unfortunately, even with the modification, nc
polarization dependence was predicted for any of the cross sections.
In actuality, the differential scattering cross section did show a
second-order polarization dependence, but it was negligible within
the limits of the approximation. In addition to the above work, a
comprehensive, critical literature review of all previous uses of
anomalous diffraction was conducted. In this review, the apparent
differences between the Cross and Latimer (1970) and Stephens (1984)
anomalous diffraction solutions for the extinction and absorption

—

efficiencies of an infinite cylinder were reconciled. i
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INTRODUCTION

Exact solutions exist for determining the extinction and absorption
of electromagnetic radiation by a few regular, homogeneous particles.
", Perhaps the best known of these are the Mie equations for spheres.
While these solutions are valid regardless of the wavelength of the
incident radiation, the particle's size, or its refractive index, they
o are frequently cumbersome; furthermore, we encounter few particles in
I, nature which are regular and homogeneous. Consequently, we strive to

find simpler limiting forms of these solutions. One limiting form which

; is useful for a wide range of particles of practical interest is the

scalar anomalous diffraction approximation of van de Hulst (1957, Ch,

2 vy

xR _A_

11). Although derived originally for spheres, it is readily applicable

'y

to many other shapes, and because of its simplicity, it can be applied
to a system of particles without greatly complicating the resulting
expressions.

; Van de Hulst proposed the term "anomalous diffraction" to describe

any theory based on the assumptions that (i) the particle is much larger

than the wavelength of the incident light, and (ii) the complex relative

a4

refractive index of the particle 1s very nearly equal to one. The first

assumption implies that we are in the geometric optics regime. The

LAax

second assumption implies that rays are transmitted through a particle

with little or no deviation and that essentially no energy is reflected.

%

. In addition to the transmitted field, there is diffraction of the
field by the particle according to Huygen's principle; this diffracted
field can be adequately described in the Fraunhofer limit. It is the
interference of the transmitted and diffracted radiation that is the

5 foundation for the anomalous diffraction approach.
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One question may quickly come to mind: How many particles of
practical interest have relative refractive indices near one? The
answer is '"very few"; however, interestingly enough, the approximation
provides the salient features of extinction for relative refractive
indices as high as two. At visible wavelengths, the refractive indices
of water droplets, ice crystals, and numerous biological particles lie
between one and two; all of these particles are studied extensively.
Consequently, I shall use the term light (by which I mean visible light)
when referring to electromagnetic radiation unless otherwise specified.
Although the theory is not restricted as such, I do this because visible
light is the most commonly encountered form of radiation in studies
utilizing anomalous diffraction techniques.

The purpose of this thesis is to first present a comprehensive,
critical review of the literature on anomalous diffraction. Next, an
attempt is made to extend the scalar approximation to include
polarization effects. To do so, both the Kirchoff and the Kirchoff-
Kottler vector formulations of Huygen's principle are used to modify the
original relation. The new vector anomalous diffraction relation is
then used to calculate the extinction efficiency and differential
gcattering cross section of a right circular cylinder to see if the

method correctly predicts these functions' polarization dependence.

.- 0w

t . ." -.' ." - -
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Chapter 1

REVIEW

1.1 Overview

The anomalous diffraction approximation was first introduced by van
de Hulst in his 1946 thesis; however, it did not come into widespread
use unti]l the publication of his now classic 1957 book. Being basically
a combination of geometric optics and Fraunhofer diffraction, the
approximation allows for the simple calculation of the extinction,
absorption, and differential scattering cross sections for certain
particles or groups of particles.

Van de Hulst coined the term "anomalous diffraction" to describe

any theory based on the assumptions

x > 1 @))
and

|m=-1|<<1 (2)

where x = 2ra/)\ is the size parameter, a is some characteristic
dimension of the particle, A is the wavelength in the medium, and m

is the complex relative refractive index of the particle. The first
assumption means that we are in the geometric optics regime; in other
words, we can use ray tracing to represent light traversing the
particle. The second assumption means that a ray is negligibly
deviated as it crosses the particle's boundaries; in addition, because
the Fresnel reflection coefficients vanish as m » 1, little energy

is reflected. Since m is complex, we can write it m = n-in'. The

-

T T N R N A Sy g R SR S R SR AR LA AN A
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assumption |m-1|<<] then means (n-1) << 1 and n' << 1, Together, the

assumptions imply that the scattered light will be confined to a

&

) narrow reglon about the forward (incident) direction.

3 It seems worthwhile here to make a point about the imaginary
part of the relative refractive index. The assumption n' << ] will
almost always be met by dielectrics at visible wavelengths (n' < 10-&

0 typically except in the region of an absorption band). However, a
problem often arises with researchers' interpretations of n'. The

-

: value of n' = 6 x 10-3 certainly meets the criterion n' << I, yet many

; scientists will say that this value of n' implies weak abscrption. A

. simple calculation will show that the absorption is far from weak.

; For bulk matter, the Beer-Lambert Law says that the absorption of

f light is given by

-

> I = I_exp(-aL) (3)

; where I is the irradiance (energy per unit area and time) at a distance

S L inside the medium, I0 is the incident irradiance, and a is the

; absorption coefficient. The irradiance is also referred to as the

§ intensity in some light scattering texts (Bohren and Huffman (1983) and

= van de Hulst (1957) for example). The absorption coefficient is related

E; to n' by

‘t o = 4In' %)

N

: The inverse of a gives an e-folding distance, i.e., the distance the

: light travels before being attenuated by e-l. Stephens (1984) cites the

:

N

-
o’

="a"w

A e
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h absorption implied by the value n' = 6 x 10-3 as being weak.
Substitution into (4) using red light (A = 0.7 um) gives an e-folding
} distance of 10 ym, thus 1 mm of this substance would decrease the

>
k incident radiation by a factor of elOO! I doubt anyone would call this

weakly absorbing. Consequently, I have several recommendations. First,
I strongly suggest caution be exercised when using relative terms like
weak or strong in reference to absorption; Stephens is far from being
) the only culprit. Second, I urge the use of physically real values of

refractive indices. It may be simpler to conjure up some value that

R LLAYL

satisfies some desired specification, but it is much more enlightening
if it corresponds to some real material. Lastly, it 1s necessary to

explicitly state the wavelength when referring to absorption since the

LN P

absorption coefficient depends explicitly on )\ as well as n'. With the
preceding points in mind, I will continue with the overview.

The anomalous diffraction approximation would probably be of only

LYAAAOS

academic interest if it were not for the following fact: van de Hulst

noticed that for spheres, the extinction efficiency's (Qext) dependence

F

on the parameter 2x(m~1) was nearly identical to that of the exact

(]
e'n & &

theory even for n as high as two. The absolute value of Qext predicted

by the approximation was somewhat different from that of the exact

<

theory, however.

The approximation's greatest advantage 1is its simplicity; another

SO

2 is that Qext approaches 1its correct asymptotic value of two as x + = for

many particle shapes. Lastly, it 18 valid for a wide range of particle

sizes; this fact makes it more appealing than the Rayleigh-Gans-Debye




-

Tt a? W W

(RGD) approximation which is based on the assumptions |m-1[<<l and

2x|m—1|<<1. For spheres with real m, Moore et al. (1967) determined
that the anomalous diffraction approximation was valid for x > 5;
however, for complex m, it proved valid even for x = 0.1.

The major disadvantage of anomalous diffraction is that is was
developed from scalar postulates; therefore, polarization effects cannot
be treated. Another disadvantage is that the magnitude of Qext
predicted by the theory is smaller than that predicted by the exact
theories as mentioned previously; however, Deirmendjian (1960) developed
empirical corrections valid to within *47 for spheres. Lastly, the
ripple structure given by the exact theories is not evident. This
structure arises from such phenomena as surface waves and multipole
resonances, so it is clear why the simple theory does not predict them.
This drawback is not very significant for two reasons: first, for
collections of particles, the ripple structure is smoothed out; second,
for many applications, the ripple structure 1is simply a complicating
nuisance.

In reference to the assumption x >> 1, there is no apparent upper
limit; in contrast, there must be some lower limit. Van de Hulst (1957)
concluded using Huygen's principle that ". . . a pencil (of light) of
width of the order pA can lead on independent existence over a length
pzx." Bryant and Latimer (1969) interpreted van de Hulst's conclusion
as follows: 1f a pencil of light is to traverse a thickness t of a
particle, and 1if t = p2A, then the beam diameter must be at least pi;
for a square area element AA of edge length d, this gives d > (At);i as

the condition for applicability.
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Van de Hulst (1957, Ch. 11) originally derived his theory for
gpheres. In the next section, I will derive the expressions for the
extinction and absorption efficiencies and the differential scattering

cross section of a homogeneous particle of arbitrary shape.

1.2 Application of Anomalous Diffraction to an Arbitrary Particle

Consider Figure 1 where the light is assumed to be incident from
the -z direction. If t is the distance a ray travels through the
particle, and if the surrounding medium is assumed to have m = 1, then
the phase difference at P between a ray which traverses the particle and

one which does not is

®(g,n) = kt(g,n) (m=~1) (5

where k = 2n/A is the wave number, and £ and n are rectangular
coordinates in the plame V. If |m~1|<<l, the field is now known in all
of the plane V which is near the particle., If the field is assumed to

i¢

be unity outside of the geometric shadow region, then it is e inside

the shadow region. Thus, the field added to the original field is
(e—io—l) .

From the optical theorem, the extinction cross section is given by

Coxt = ﬁz Re{S(0)} (6)

k

where S(0) denotes the complex scattering amplitude in the forward
direction, and Re means the real part. For an opaque body much larger

than the wavelength, we find from Fraunhofer diffraction that

$(0) = ‘2‘—“ G (7

e et e S e e TS S e
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: 10
N where G = IAdEdn is the area projected by the body onto a plane
X perpendicular to the incident direction. If we generalize (7) to
: include rays transmitted through the body, we get
|
k2 -1¢
$(0) = 5= J.(1-e )dgdn (8)
The first term under the integral describes the diffracted field; the
by
second term describes the transmitted field. The extinction then, is a
. maximum when the two fields interfere destructively. Substitution of
: (8) 1into (6) gives the extinction cross section.
. The absorption cross section can also be calculated. If we recall
X \ -1¢ -ktn'
., that m = n-in', the expression e contains a term e describing
:t the amplitude decay. The intensity decay 1s just the square of this,
.. ) )
\ e 2ktn ; therefore, the fraction of the incident intensity absorbed by
) <2ktn’ '
"\ the particle is (l-e ). If we note that ktn' = Re{id}, the
; absorption cross section can be written
. -2Re{19}
-, Cabs fG (l-e Ydgdn (9)
g
L
* Next, we can calculate the extinction and absorption efficienciles;
- they are respectively
ﬂ‘
‘1
5
) ext 2 -1¢
Qext T c Re{fG(l-e )dEdn} (10)
L and
o
Cabs 1 ~2Re{ 1%}
) - - —— -—
Qabs G c é (1-e Ydgdn (1)
X
\
o

> e y

~ N LS T TR
-’.r.-.f\.r,v-lf./-,,, ERTAY AT N \\ AR

R RN R S A A A I N A I AN NI N



11

)
ﬂ
\
’ Equations (10) and (l1) are related to each other by
4
- +
Qext Qabs Qsca (12)
; -
h where Qsca is the scattering efficiency; if m is real, Qabs 0, and
- = . L . -]
. thus Qext Qsca If n 0, the asymptotic limit of Qext as x * is
. two. From (10), it is apparent that as Q > 2, C + 2G; in other
. ext ext
i
. words, an infinite, absorbing body removes twice as much energy from a
i: beam as is geometrically incident on it. The two contributions of G to
”,
: Cext come one each from absorption and diffraction (scattering near the
y
Wt forward direction). For many shapes, such as spheres, cylinders, cubes,
s and discs, (10) and (11) can be solved analytically; for arbitrary
N
: particles, they must be numerically integrated.
A
s Bryant and Latimer (1969) treated the arbitrary particle in a
" manner slightly different from that just outlined. In (5), ¢(£,n) may
;. be a complicated function, especially for an irregularly shaped
particle. Instead of the spatially varying ¢(£,n), Bryant and Latimer
! suggested using an average phase shift defined by
: 0* k 1 13
: e, (@-1) (13)
£ where tav = (volume/projected area) is the average particle thickness.
a This approach provides a useful first guess as to how the particle will
<
s interact with the incident beam; however, a good deal of valuable
, information could be lost in such a crude averaging process. Also, the
-
- evaluation of tav may be difficult since it will be a function of the
Cd
L4
» particle's orientation in the beam. As a simple test, I compared the
- values of Qext obtained from both van de Hulst's and Brvant and
s
W
~1
Ay
.
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Latimer's methods for the case of a nonabsorbing sphere. Bryant and
Latimer's method gave Qext values within about *6-107 of those obtained
from van de Hulst's method. I suspect the disagreement may be stronger
for a more complex particle. In light of the foregoing statements, I
recommend Q* be used cautiously.

Once the extinction and absorption efficiencies of a single
particle are known, attenuation by a collection of the particles can be
calculated. We can use (3), but in order to distinguish between the

single particle case and present case, I replace a with t to get
I =1 exp (-1L) (14)

where L 1s now the distance into the (poly) dispersion. We can find t

from

v = fdu fdy fdB G(u,vy,B) Qi(u.y,e) n(u) gly) h(B) (15)

where u is some parameter specifying particle size, y and B are angles
specifying particle orientation, n(u) is some size distribution function
per unit volume, and g(y) and h(g) are some angular distribution

functions. If we let Q1 be Qext’ Q s OT Qsca’ then 1 becomes the

abs
extinction, absorption or scattering coefficient. Instead of the
extinction coefficient, we may call t the turbidity. 1In the literature,
I find that usually only one or two of the integrations in (15) are
performed; for example, the integrations over all orientations may be
evaluated for a system of randomly oriented particles of uniform size.

Implicit in the use of (14) and (15) is the assumption that multiple

scattering can be ignnred. It is for a collection of particles that

e .I-;I.-f“l."'.‘.'. --‘-,.‘{\d'-.l..- e ..r\u .‘-.\l.'-"\r v_'w_.r o,




ol N At v a0atat el At a2t 2 ab At VAl At Val ta¥. Yaf el Aab o B S8 Ge@ v Aah Yo ml tatotal vat 2t aticaboab. a2t cab ‘et a8 ‘al ca¥.atl *ab.*at. ab. st

"'

R

13 Eﬁ

i

Cj

anomalous diffraction is perhaps most useful; for regular particle A
shapes such as spheres and cylinders (15), does not become overly ﬁ
cumbersome to use. In fact, for some particle systems, t can be found :ga
analytically. :;
Van de Hulst (1957, p. 184) noted that the scattering amplitude N
function for small angles near the forward direction could be computed E-
s

for spheres by adding a simple factor to S(0). For an arbitrary ;
particle which lacks the sphere's symmetry, a similar but slightly more ;:;
complicated factor must be added. ;E,
Co
Again, let the incident light be from the -z direction; also, let g:
the origin lie somewhere within the particle. Furthermore, assume { and 5}‘
n are rectangular coordinates in the shadow plane and let the light be Fi
scattered at some arbitrary azimuthal angle ¢ (measured from the +¢ E&
axis) and some polar angle 8 (measured from the 4z axis). We will >3
S
require 6§ to be small enough so that sin 6 = 6. Then, following van de if
Hulst's method for a sphere we find igi
$(8,4) = %? (1+<:ose)fG(1-e‘”’)e'“‘a(5‘:°s¢ +onsing) g (16)

for an arbitrary particle. The expression (16) agrees with that given -
by Meeten (1982b). Van de Hulst let the factor (l+cosf) = 2 since ¢ is Ei
small. Once S(8,¢) is known, we can calculate the differential ;;
scattering cross section from 3
N
== - k—; 5(8,0) 1 (17) :-E

e

:- .."‘.l’". &{"':“:hl“l{ 'I-.l'

--------------------- .
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where d is an element of solid angle. It is important to realize that
dCsca/dQ is not a derivative; rather it is written this way to remind us
that it is the differential scattering cross section (Bohren and Huffman

1983, p. 72).

1.3 Literature Review

In the sections which follow, I will provide a comprehensive,

critical review of all previous uses of anomalous diffraction. At the
end of the chapter, I will provide reference tables listing Qext and

Q

abs’ when available, for each shape 1 have discussed. Several factors
should be kept in mind while reading the literature review. First, the
papers were reviewed on the basis of their use of anomalous diffraction;
to consider all other factors would prove too lengthy for this thesis.
Second, i:he notation given is that consistent with previous sections; in
other words, I translated each author's notation into that of this
thesis. Finally, the divisions I have created are not perfect; some
papers may apply to several subsections. The categorization scheme I
have chosen is the one which I considered to give the best mixture of
fluidiey and consistency.
1.3.1 Spheres

The homogeneous sphere is the simplest particle shape to use in
light scattering studies. It has no shape anisotropy; therefore, the
extinction, absorption, and scattering efficiencies are polarization
independent. I have found, probably because of its simplicity, that the
sphere receives the most attention in the literature; this fact will

become quite apparent if one notices that about 75% ot this review is

devoted to spheres,

3 - - . e PR R I I N S N T IR PR A S s P T O
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1.3.1.1 Single Spheres

As mentioned earlier, van de Hulst first derived the anomalous
diffraction approximation in his 1946 thesis, although he had not named
it at that time. The approximation is often referred to by other names
such as (i) the ray approximation, (1i) the van de Hulst approximation,
and (iii) the soft particle approximation; the first and third could be
confused with other approximations and should be avoided. The 1946
thesis is translated only fairly into English and is mostly of
historical interest as the basis for van de Hulst's 1957 book. This
1957 text is a must for the newcomer to anomalous diffraction or light
scattering in general. Included with van de Hulst's development of the
approach for spheres (Ch. 11) are various limiting expressions for small
and large phase shifts as well as expressions valid in the region of an
absorption band. Table 1 gives van de Hulst's expressions for Qext and
Qabs for spheres and many other equivalent expressions.

Anomalous diffraction, as derived by van de Hulst (1957, Ch. 1l1),
had its limitations. First, it underpredicted the magnitude of the
exact value of Qext' Second, van de Hulst derived the theory only for
spheres and normally incident, nonabsorbing cylinders. Third, effects
of optical anisotropy were not considered; and lastly, polarization
effects could not be predicted. 1In the remainder of this thesis, the
attempts of various researchers to overcome these limitations are
presented.

Many calculations have been performed comparing the exact values of

Qext with the predictions of the anomalous diffraction approximation.
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Penndorf (1956, 1959) made extensive calculations for real m and found

q van de Hulst's method useful for 1 < n <1.5. In 1956, Penndorf provided
? AD
¥ these simple correction factors for Q :
K) ext
M
.I

' - n-1 4.08, AD
N Qext (1+ n $ ]Qext 4.08 < ¢

(18)

y
A ' - n-1 % AD _
] Qext (1+ n ZTﬁglqext 5(n=1) < & < 4.08
. , AD
5 Where Qext is the corrected value, and Qext is the value from anomalous

diffraction. These corrections bring the results within 27 of exact

values for 1 < n < 1.5. A similar correction was offered by Klett

(1984),

A CAL A A U

(n - 1.2),_.AD
' - . P LL TS
Qext (1.1 3 ]Qext (19)

‘
‘
)
: with similar results for 1 < n < 1.5. Deirmendijian (1960, 1969)

extended Penndorf's corrections to include complex m for various ranges
2 of ¢. His factors give Qéxt within *47 of exact values. Deirmendjian
i (1960) also applied his correction factors to Q:gs, but he did not

specify the accuracy in this case; he did mention that the results may
be up to 157 off in the region of an absorption band. In a continuance
of his fine work, Deirmendjian et al. (1961) provided a minor section

that graphically compared anomalous diffraction and Mie calculations of

b}
L]
L
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» Qext for complex m. In his 1969 book (pp. 28-37), Deirmendjian expanded
N, upon the results of the 1961 paper by including also a comparison of the
~
1y values of Q;xt obtained using his correction factors. Again, the
o
» comparison was for complex m, but unlike before, the results were
- presented in tabular form. Another paper in which a correction factor
s
- was offered for Q:ic was that of Smart and Vand (1964); their
‘.
5~ complicated expression gives Qéxt values within 27 of exact values for
" the range 1 < n < 2.06. Smart and Vand's methods were difficult to
}-u
- follow. For example, they introduced the transmission coefficient at
.‘; normal incidence into van de Hulst's expression for Qiﬁt’ although they
-, did not identify it as such. Their logic for adding the factor was
[k vague; In fact, I would think the factor sh--1d be added twice if at
:2 all: once to include rays entering the sphere ~nd once to include rays
g exiting it. Regardless, Smart and Vand used their correction to isolate
- the ripple structure assoclated with the exact theory by taking (Qext[ -
E ‘Qéxt" This application, at least, was a novel use for anomalous
A diffraction. Kerker (1969) gave a fine review of anomalous diffracticn
f; for spheres (pp. 104-127), cylinders (pp. 291-293), cubes (p. 127), and
\'h
;a spherical polydispersions (pp. 454-457). He provided both
¥
g Deirmendjian's (p. 126) and Smart and Vand's (pp. 113-114) correction
N factors; however, he failed to identifv a variable in his section on
o
. AD
A ' 9
v Smart and Vand. In Kerker's equation 4.2.12, Qsca(l) is simply Qext for
s n' = 0. Also note that the third term in Kerker's equation 4.2.27 is
;: migssing a factor of o-l; this equation gives Qigt for absorbing spheres
o ‘
T ‘see Table 1). If we continue the review of those papers comparing
= anomalous diffraction predictions with those of Mie theory,
%
.
2
.

h ]
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we find a nice, concise paper by Moore et al. (1968). They provided

Mie

excellent graphs of Qiit/qext

versus x and Qabs/QZ;: versus x. A
similar treatment was performed using the RGD approximation. From
their comparisons, Moore et al. determined that for n' = 0, anomalous
diffraction was valid for x > 5; however, for n' ¥ 0, it remained valid
even for x # 0.1. Also in 1968, Farone and Robinson, in an often-cited
paper, mapped the regions of the m-x domain in which anomalous
diffraction was within 15, 50, and 1007 of exact Mie results. They
considered the ranges 1 < x < 20 and 1,1 < n < 2.5; furthermore, they
included small angle light scattering as well as Qext' Although the
paper has valuable information, its terminology is poor, and the nominal
assumptions listed for the anomalous diffraction approximation are
incorrect. Farone and Robinson gave |m-1|<<l and x|m-1|<<l as the
assumptions required for van de Hulst's method; these are actually the
assumptions of the RGD approximation. 1In addition to this mistake, they
made statements such as "Rayleigh~Gans scattering occurs when . . . ;"
Rayleigh-Gans is a theorv which predicts light scattering, not a form of
light scattering. I believe great difficulties may arise when we fail
to separate reality from descriptions of it. The last comparison paper
for spheres is that of Debi and Sharma (1979). Not only did they
compare anomalous diffraction to the Mie theory, they compared it to the
RGD and Eikonal approximations as well. I find thils paper very useful
if one wishes to find the best approximation for a given situation.

Debi and Sharma considered only real m with 1.05 ¢ n < 1.30 and 0.2 < x
< 25. Of four m-x domains they identified, anomalous diffraction was

the best approximation in two: x > 1, ¢ > 4 and 0.4 < x < 1.2, & < 1,

Ce v a'w

N
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The Eikonal approximation was strongly promoted by Debi and Sharma. It

applies to rthe same m~x domain as anomalous diffraction, and in fact, is

¢
§ in all ways identical to anomalous diffraction except for the phase
3 shift. In the Eikonal approximation, the phase shift is given by
& 0 =% () o, (20)
a where the subscripts refer to the Eikonal and anomalous diffraction
ti approximations, respectively. Since |m-1|<<l is assumed, the Eikonal
A approximation is nearly equal to the anomalous diffraction
» approximation; moreover, they become identical as m + 1 for real m.
& Van de Hulst's approximation is more heavily used by, and more familiar
‘3 to those who study light scattering, so I see no real reason or
advantage in considering the Eikonal approximation. 1 hope Debi and
2 Sharma perform a similar study for complex m in the future as the
ig results may be interesting.
W In contrast to the comparison papers, several researchers were
L: content to use van de Hulst's sphere approximation to gain insight into
',;. more difficult scattering problems. In an excellent, short letter,
i Latimer and Bryant (1965) eliminated any possible ambiguity in the
2 notation van de Hulst used in his original derivation; subsequently,
3; they developed expressions for the phase shifts in absorption bands of
3; the Lorentzian or Gaussian type. These phase shifts could then be used
i in anomalous diffraction expressions. Plass (1966) went on to
53 systematically explore the dependence of QAD and QAD on m by varying
' ext abs
S n and n' incrementally. Assuming the exact values of Qext and Qabs
.
n.:’ - . , . . .‘.4.;‘_':.: AN '.-‘;4- '-(‘.: .;J., 1‘.~.' e __ T a e -.*'_.-.q_';{‘:'_.‘._. -‘_:.',‘a_.- - '?‘-:-'-:" ) - '_ '-‘.-l‘.'-' - v Pt .
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have the same functional dependence, Plass made some interesting
observations. Plass, however, is another person who may have
migsinterpreted the meaning of n'; for example, he called n' = 0.01
small absorption., For visible light, this value of n' implies enormous
absorption. Next, in a fine 1969 paper, Bryant and Latimer illustrated

numerical integration techniques for determining Q in which a sphere

ext
was modeled as a collection of concentric cylinders. Each cylinder's
scattering was described in terms of anomalous diffraction. This method
can readily be applied to a coated sphere over which m does not vary too
greatly. In a more complex departure from van de Hulst's simple
expressions, Meeten (1982b) generalized anomalous diffraction to
describe small angle light scattering by anisotropic spheres. His
results might be of great value as he gave the scattering matrix in
terms of the particle’s Jone's matrix; the components of the scattering
matrix are each derived from an anomalous diffraction approach. Thus,
polarization effects can be considered for an anisotropic sphere.
Meeten's approach leaves me with some doubts. Meeten made two important
assumptions, one completely intuitive, that while logical, have no
physical basis. I believe some of his results could be realized by
other means; consequently, this paper warrants further study. Finally,
a recent paper by Klose (1986) appeared to have important results. From
a completely different approach, without the use of the forward
scattering amplitude, Klose derived expressions for Qext identical with
those of anomalous diffraction for a sphere, cylinder, and spheroid.

Furthermore, Klose reported a polarization dependent extinction

efficlency for the spheroid, something not appearing in the anomalous
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diffraction results. However, I could not understand why no
9 polarization dependence was found for the cylinder; after all, a highly
prolate spheroid is often used to represent a cylinder. Thus, I wrote
to Klose about this apparent conflict. Upon checking, Klose found an
error in his equation 2.20 for the spheroid; upon correction, the
o polarization effects no longer appeared for the spheroid. Although
expected, this result is unfortunate. Klose assured me that he would

publish an errata soon. Klose's paper is difficult to follow, but the

: fact that he duplicated van de Hulst's results in a completely

:# independent manner is interesting. Since Klose's method is far more

; complicated than that of van de Hulst, I do not foresee it having any

fj great practical value.

} 1.3.1.2 Monodispersions

b Although few papers addressed spherical monodispersions and their
2 associated features, not surprisingly, all of the ones I found were

c concerned with colloidal suspensions. Champion et al. (1978) derived

. the refractive index increment dn/dcz, where <y is the concentration of
% the dispersed phase, for dilute dispersions using the Rayleigh, RGD, and
- anomalous diffraction approaches. In addition to spheres, they also

- considered discs which prompts me to state the following opinion:

; Champion et al. called "Mie scattering"” that for particles of the order
‘) x = 1; however, since Mie developed his relations for spheres, I believe
'; the term "Mie" should only be used in reference to spheres, Also, as I
N mentioned in my review of Farone and Robinson (1968), I dislike terms

) such as ""Mie scattering"” and "Rayleigh-Gans scattering” because neither
3 is a form of scattering. I realize phrases like this are common in the
>

o
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L‘ literature, but I think my point is valid. I will not address this

by issue again. To continue, Champion et al. found that the refractive

) index increment, unlike Q:it’ could be extrapolated correctly from the
t anomalous diffraction size region to the Rayleigh region. The Rayleigh
D approximation is valid for particles with x << 1 and lmx|<<1. In a

| continuance of their work, Champion et al. (1978b) discussed the

N refraction of light by a dilute suspension of spheres, they used the

[~ exact Mie theory as well as the Rayleigh, RGD, and anomalous diffraction
<j approximations. Next, Champion et al. (1979b) compared refraction and
E extinction (by which they meant Qext) to find the similarities and

': differences. For the comparison, they defined a term Pref’ the

‘E refraction efficiency in analogy to Qext; I found Pref a more difficult
g' concept to understand physically. Nevertheless, the paper was simple

. with potentially important results. Champion et al. found that a

S refractometric method would be better for sizing larger particles than a
L turbidimetric method. 1In all cases I have encountered, turbidimetric
e methods were used as the sizing technique. Therefore, the Champion et
'3 al. conclusions merit further study.

S Meeten (1980a, 1980b) performed a simple, yet clever generalization
.

- of anomalous diffraction to enable the calculation of the linear

,E birefringence and linear dichroism of a dispersion of colloidal

8 particles. In Meeten (1980a), the generalization could apply to any

" anigsotropic particles as long as all of their optic axes were aligned,
35 but alignment of the optic axes is an unrealistic requirement. Meeten
:¢ (1980b) overcame this restriction by allowing for arbitrarily oriented,
p anisotropic spheres. Meeten's (1980a) simple approach is worth

N
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repeating here. Suppose a particle has mutually orthogonal optic axes

a, b, and ¢ with refractive indices ma, mb, and mc - mb, respectively.
Meeten assumed that upon transmission, the phase lag of light polarized

parallel to the a or b axes could be described by

°e = kt:m1 (ua -1 (21)
or

¢ = ktm (v, = 1) (22)

1 b

respectively, where @e is the phase lag of the extraordinary ray, m, is
the refractive index of the continuous phase, ua = ma/ml’ @O is the
phase lag of the ordinary ray, and by = mb/ml. Meeten then separately
applied (21) and (22) to (8) to give S(O)e and S(O)o. Meeten's results
confirmed the empirical Zocher's rule which states that linear dichroism
is a maximum when linear birefrigence is a minimum., Although clever,
these results lack experimental verification. Meeten (1982a) pointed
out the following error in Meeten (1980b): 1in equations (5) and (30),
the right-hand side must be divided by 4weo where € is the permittivity
of free space.

Latimer and Wamble (1982) found another good use for anomalous
diffraction. They wanted to qualitatively model the observed
modifications in scattered light fluxes due to the aggregation of
colloidal particles. The aggregates are complex in shape, yet some
shape information is lost through the randomness of their orientations.
Anomalous diffraction, with its attention to gross particle parameters,
seemed a useful tool for the study; it was unnecessary to complicate

things with exact theories since no exact theory wholly applied.
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Latimer and Wamble chose the coated sphere as a model for the

aggregation., The refractive index and volume of the coat matched those

0

‘: of the colloidal particles in the aggregation; the refractive index and
. volume of the core matched those of the interparticle spaces in the

aggregation. The paper is good overall with two exceptions: first, the

‘: section on information theory consists of mostly "hand-waving” arguments
i and second, the scales of Figures 9 and 10 are different thus giving the
p appearance of better quantitative agreement between experiment and

; theory than might actually exist.

'E 1.3.1.3 Polydispersions

“ Polydispersions are the rule rather than the exception in naturally
:i occurring collections of particles. The variables of interest when

.

: considering polydispersions are t, the turbidity, and Gext’ the

- extinction efficiency of the polydispersion. This latter quantity is

3 simply t divided by the total geometric cross section per unit volume,

:: G. For spheres, G is given as

? G = f: nazn(a) da (23)
; where a is a sphere's radius. By replacing the exact values of Qext
'g and/or n(a) in (15) and (23) with analytic functions, we can hope to

N

~ analytically integrate or at least simplify the expressions for t and
‘; aext' While these analytic expressions may be less realistic
'3 physically, they can allow us to find the characteristic dependencies of
é v and 6ext on particle size or refractive index for example. In this

section, the analytic expressions used to replace the exact value of

SOTHAASENCE
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Qext in (15) are those for spheres with real or complex m derived from

the anomalous diffraction approach (see Table 1).

: Van de Hulst (1957, p. 194) illustrated the calculation of E)'_ext for
: three simple, yet unrealistic size distributions. A more physically
s acceptable approach was undertaken by Zuev et al., (1965). They

Ez calculated aext using Deirmendjian's corrected value of Q:zt as the

g kernel in the turbidity relation. For a size range 2 < a < 10 uym and
~ with 0.5 < A < 14 um, Zuev et al. tested their calculations by

E collecting experimental data from an artificial fog with a vy size

E distribution. The graphs depicting the experimental versus theoretical
- values of aext were almost impossible to decipher; however, upon close
5; examination, the values are seen to be in reasonable agreement.

%: Deirmendjian (1959, 1960) calculated the turbidity at the surface
t due to water droplets in the atmosphere using several haze and cloud

;? models. In the first study, Deirmendjian (1959) ignored absorption by
i considering onlv 0.8 < XA < 2,25 um where water shows few strong

. absorption bands. In the follow-up study, Deirmendjian (1960) was

,i forced to consider absorption since he was interested in the region

E; 2.25 ¢ X < 14 um. Water shows several strong absorption bands in this
] wavelength range. Although in the first paper Deirmendjian used exact
'; Mie values, in the subsequent one he used his corrected values of tht
SE in the turbidity relation. Since m i{s strongly wavelength dependent in
t this part of the spectrum, Qéxt was calculated at many individual
,E wavelengths., For a further analysis of the extinction by spherical
7.

2 polydispersions, I recommend Deirmendjian (1969). 1In a similar study,
o,

. Hilbig (1965/66) calculated the turbidity of a Maxwell-distributed

N
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collection of nonabsorbing spheres using Qiit as the kernel of the
turbidity relation. Since Hilbig's paper was unavailable in English, I
have provided only the information from his abstract. Next, Casperson
(1977), 1in an outstanding paper, developed relatively simple analytic

expressions for t using Qﬁi with real or complex m in (15). The size

t
distribution was modeled as being either logarithmic or power-law-
exponential. These size distributions are frequently used to model
clouds, rain, and atmospheric aerosols. Casperson was all-encompassing
in his analysis and quite realistic about his results. He made the
following valuable point which should be considered by all who perform
turbidity calculations using anomalous diffraction: Qext is small for
small x ({.e., x < 1) when |m—1|<<1, so the extinction will be dominated
by the larger particles; consequently, the fact that anomalous
diffraction is poor for x < 1 will be of little importance.

Lastly, Yamamoto and Tanaka (1969), Box and McKellar (1978a) and
Fymat and Mease (1978) all found anomalous diffraction to be an
excellent tool for gaining insight into the inverse problem of light
scattering. T will elaborate on the inversion problem in another
section (1.3.1.5). Basically, in inversion problems, we use measured
values of (i) and invert the turbidity relation to find parameters of
the particle system like the size distribution or refractive index. For
their inversions, all three groups used exact Mie theory to calculate
Oext in (15). However, each group replaced Qext with ngt to study the
direct problem. By studying the direct problem, insight may be gained

into the potential pitfalls of the inverse problem. First, Yamamoto and

Tanaka (1969) were concerned with the size distribution of atmospheric
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aerosols. They ignored absorption by citing a study in which the
refractive index of the aerosols was given as m = 1.5 - 0.0li or

m= 1.5 - 0,11; they declared that n' decreased for a moistened aerosol.
For the region 0.35 < A £ 2,27 um which they considered, even if n' of a
moistened aerosol decreased by a factor of 10 (especially if n' = 0.1),
I do not think that ignoring absorption was wise here. Regardless,
Yamamoto and Tanaka used Q:zt in the turbidity relation as a check of
the dependence of T on n. In this way, they could estimate the error
incurred if their assumed value of n = 1.5 was incorrect. Next, Box and
McKellar (1978a), armed with a knowledge of the column-integrated
turbidity's dependence on refractive index, were well prepared to attain
their goal: the determination of atmospheric aerosol columnar loading
from measurements of T(A). Please note that their n(a) is the size

distribution per unit column area unlike mine which is per unit volume;

consequently, their T is dimensionless. Likewise, Fymat and Mease
(1978), armed with a knowledge of the turbidity's dependence on
refractive index, were better prepared to attain their goal: the
retrieval of the complex refractive index of atmospheric aerosols using
narrowband spectral transmission ratios. In closing this section, I
must make two comments on Fymat and Mease's paper. First, their graphs
of int versus a were confusing because their choice of ordinate and
abscissa was the opposite of that normally encountered. Second, for a
portion of their study, Fymat and Mease considered n' > 0.1 which may be

in violation of the anomalous diffraction assumption requiring n' << 1;

the approximation is poor for n' 2 0.1 and should not be accepted as an

accurate approximation to Mie theory in these cases.
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1.3.1.4 Bilological particles

3 In the past 25 years, biologists have become more aware of the

value of light scattering as a nondestructive tool for acquiring

information on cell cultures. I am devoting a special section to the

:: treatment of bilological cells because they present a unique problem,
3 Since a cell is a highly intricate, heterogeneous system, we cannot hope
tj to exactly predict how a given cell will scatter light; in fact, because
: of the complexity, one might think it impossible to predict the
3 scattering at all. Yet, as we will see in the forthcoming discussion,
§ fairly accurate light scattering predictions can be made. The success
fi of these predictions can be attributed to the loss of light scattering
? detail inherent in a randomly oriented dispersion of cells., As a
: reminder, all researchers in this section have modeled their cells as
. being spherical. The light scattering predictions are derived from the
» Mie theory, the RGD approximation, and most importantly to this thesis,
N
': the anomalous diffraction approximation.
- My recommended starting point for those interested in light
;; scattering techniques for cells is Latimer (1982). 1In this excellent
; paper, he provided a review of the uses, potential uses, and limitations
> of light scattering theory for deriving information from cell samples.
‘; He discussed the Mie theory, the RGD approximation, and the anomalous
E diffraction approximation and noted that most cells are of such a size
.; and composition, that in studies using visible light, the latter two
s approximations usually apply. Latimer pointed out that the overall cell
N
: is usually in the large particle domain with an inner structure in the
— small particle domain; consequently, extinction and small angle light
,:7
A
A
.
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scattering should be used to investigate the gross cell structure while

large angle light scattering should be used to investigate the
microstructure of the interior.

The first paper to appear on this section's subject was that of
Latimer and Rabinowitch (1959). They used van de Hulst's (1957, p. 191)
anomalous diffraction expressions for extinction in the region of an
absorption band to predict the experimentally observed enhanced
scattering on the long wavelength side of an absorption band. The
particle of incerest was Chlorella, and the absorption was due to
chlorophyll pigment. The pigment was modeled as being uniformly
distributed throughout the cell. Although a simple approach, the
observed characteristics of the scattering were predicted. In a
follow-up study, Charney and Brackett (1961) tried an empirical
correction to ¢ in van de Hulst's (1957, p. 175) expression for Qszt for
spheres. Their modified ¢ had two terms: the first was proportional to
the refractive index of the cell relative to the surrounding medium; the
second was proportional to this same refractive index adjusted by the
strongly wavelength dependent pigment refraction. Charney and Brackett
were well aware of the high degree of approximation inherent in their
approach, yet they achieved excellent agreement between their
theoretical predictions and experimental observations of the light
scattering by Chlorella.

Since absorbers (pigments) are often only a small portion of a
cell, and because of the large intracellular distances, some light
passes through a dispersion virtually undamped. This effect causes

distortions in the measurements of absorption spectra when some
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conventional spectrophotometers are used. Latimer and Eubanks (1962)

termed this effect the "sieve'" effect and sought a correction for {it.

Their correction was based on a minor modification of van de Hulst's

(1957, p. 181) expression for Qigs' Latimer (1967) further refined the

method. Like Charney and Brackett (1961), even with the many

approximations they used, Latimer and Eubanks obtained absorption

spectra for red blood cells and chloroplasts in good agreement with

previously published spectra.

- Latimer et al. (1968) made a theoretical investigation of how

conformational changes in a cell's structure affects light scattering.

They made two basic assumptions. In the first, the cell was assumed to

Y take up or extrude water with no change in dry weight; in the second,

* the cell's interior was assumed to behave like an ideal solution. For

an ideal solution, the refractive index is modeled as being inversely

L]
. proportional to the system's volume so that we can write the phase lag
)
A\l

of transmitted light in the shadow plane as

¢ = kt (mo-l) VO/V (24)

where mo and Vo are the Initial values of refractive index and volume,
respectively. By substituting this ¢ into the expression for Qigt’ the
, effect of volume charzes becomes fairly simple to understand physically.
Within the limits of the approximation, shrinkage decreases the cell's
projected area and thus decreases extinction; on the other hand,
shrinkage increases the effective refractive index and thus increases

extinction. Since the two effects compete, it is not obvious beforehand
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whether a given change will increase or decrease extinction; it will
depend on the cell's original size, refractive index, and the wavelength
of the incident beam. Once the nature of the problem was known, more
precise calculations were performed. Bryant et al. (1969b)
experimentally confirmed the predictions of Latimer et al. (1968) using
exact Mie calculations for the theoretical work. Comparison was also
made to the predictions of anomalous diffraction and the RGD
approximation. Only anomalous diffraction was in qualitative agreement
with both the Mie theory predictions and experimental observationms.

Bryant et al. (1969a) measured Cext of E. Coli cells, veast cells,
and spinach chloroplasts. These measured values of Cexc were compared
with calculated Ciit values. The particle parameters such as size,
shape, and refractive index were obtained experimentally and used in the
theoretical calculations. Initially, all cells were modeled as spheres;
subsequently, calculations were made in which the yeast cells and
spinach chloroplasts were modeled as spheroids and in which the E. Coli
cells were modeled as infinite cylinders. For both the spheroid and
cylinder cases, the theoretical predictions were in better agreement
with experimental observations than those of the sphere cases. For
spherolds of axial ratio close to one, the effect of asphericity was
found to be almost negligible. 1In contrast to the excellent predictions
.Z the models of E. Coli and yeast cells, an artifically low value of m
had to be used for the spinach chloroplast to get good agreement between
theory and observation; no reason was offered. Bryant et al. contained
a lengthy, albelit poor dissertation on the physical principles

underlying the anomalous diffraction approximation. For example, thev
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used phrases like "light bounces" and "light bends"; I think these
metaphors are suitable only in elementary texts. Latimer (1983)
resolved an apparent conflict between the results of the previous work,
Bryant et al. (196%9a), and those of Bussey (1974). Contrary to Bryant
et al., Bussey found decreased transmission through a collection of
yeast cells upon shrinkage., Bussey's theoretical work was based on an
expression derived from anomalous diffraction in the limit of small
phase shifts; however, his cells were too large for this relation to
apply. Also, the parameter Bussey needed to measure could not be
obtained correctly with the photocell he used. Fortunately for Bussey,
his two errors compensated each other; as a result, his theoretical and
experimental transmission values were incorrectly in good agreement,

Morris and Jennings (1977) used anomalous diffraction to obtain
closed-form, analytic expressions for small angle light scattering by
coated spheres. The success of their method was dependent on the sphere
being either very thickly or very thinly coated. Morris and Jennings
noted that many cells could be modeled by a thinly coated sphere. Their
paper was well done and concise; only their research on previocus uses of
anomalous diffraction was lacking. Morris and Jennings claimed little
use had been made of van de Hulst's approximation, a fact easily
disputed by the length of this literature review.

Morel and Bricaud (1981) used a theoretical approach to
reinvestigate the problem of absorption in a discrete medium and the
applicability of the Beer-Lambert Law in such cases. They showed that
the concept of specific absorption, the absorption per unit absorber

concentration, had to be modified for a discrete medium. Morel and
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Bricaud were concerned with algal cells; they modeled them as
homogeneous spheres and applied van de Hulst's (1957, p. 181) expression
for Qggs to them. Although they used anomalous diffraction, they did so
with virtually no discussion of its basic precepts. When using an
approximation, all of the premises should be stated so that the reader
is aware of the applicability of any resulting theory. The choice of
anomalous diffraction was wise here as the whole study was very
approximate. Why bother making exact scattering calculations for a
first guess theory? Morel and Bricaud found three basic regimes. For
small and large phase shifts, the specific absorption was nearly
constant, so the Beer-Lambert Law was valid. Between these regions, the
specific absorption was variable, so the Beer-Lambert Law did not
strictly apply. Morel et al. (1983) continued to make good use of
anomalous diffraction, although I had to check Morel and Bricaud (1981)
to even know they were using it, Bricaud et al. measured absorption and
scattering coefficlents of four oceanic phytoplanktons and transformed
the coefficients into specific coefficients and optical efficiencies. A
knowledge of Qabs for phytoplanktons is valuable for determining
photosynthetic yields. For a theoretical investigation, they assumed
the phytoplankton to be homogeneous spheres, then anomalous diffraction
was used to calculate asca and aabs’ the scattering and absorption
efficiencies of the entire systems, for various size distributions and
refractive indices. The graphs of these results are superb. As a final
comment, the notation used in the paper was that proposed by the
International Association for Physical Sciences of the Ocean (TAPSO); I

find this notation terrible. In my opinion, attempts to impose
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standardized notations, while laudable, are usually failures, and the
readability of papers and texts suffers as a result. Another paper
following the IAPSO guidelines, and the last of this section, is that of
Bricaud and Morel (1986). Like their previous work, they used anomalous
diffraction with little explanation of the underlying assumptions or
accuracy of the approximation. Again, phytoplankton were modeled as
homogeneous spheres. As inputs to their anomalous diffraction-based
calculations of 6sca and aabs’ they used the experimentally determined
size distribution, measured absorption spectra, and an adjustable real
refractive index n of the form n = 1 + € where € is some small number.
Even though Bricaud and Morel admitted that their whole approach was
just a first approximation, the agreement between theoretical
predictions and experimental observations was fair; the graphs depicting
this comparison were small, crowded, and hard to read, however.

1.3.1.5 Inversion techniques

All of the sections thus far have dealt with the direct problem of
light scattering; in this section, we turn our attention to the "harder"
indirect problem. Bohren and Huffman (1983, p. 10) provided the
following useful analogy: the direct problem is like trying to predict
what a known dragon's tracks look like; the indirect pfoblem is like
trying to predict what an unknown dragon looks like from an inspection
of its tracks.

1.3.1.5.1 Monodispersions

For a monodisperse system of spheres the turbidity relation reduces

to

T = ma’ N Q (25)

ext
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where N is the number of particles per unit volume. By experimentally
measuring T and N, and by substituting ngt for the exact value, it
becomes relatively straightforward to invert (25) to get the sphere
radius, a, or refractive index, m, if either is known beforehand.
Please note that absorption is neglected in each of the papers of this
section,

Shchegolev and Klenin (1970) developed a system of equations, one
derived from (25), that allowed for the simultaneous determination of
both a and m. The inputs to the system of equations were t()\) measured
over a narrow wavelength spectrum and (T/N)o, the specific turbidity
extrapolated to infinite dilution. The use of anomalous diffraction was

) well hidden in this paper, although I do not know why since the
‘ theoretical predictions matched the experimental observations fairly
well. Next, Shchegolev and Klenin (1971) found that the relation for

the wave exponent, w, given by

3lnTt $ aQext

w= =
3Imk Q. o¢

(26)

could be expressed analytically if Qizt was substituted for the exact
value. The resulting predictions of w agreed well with previously
published literature values. Shchegolev and Klenin illustrated the
usefulness of anomalous diffraction rather nicely here. Finally, Klenin
and Shchegolev (1971) put the theory of their previous two papers to
work in the area of polymer science. They found, within certain

restrictions, that the mass of polymer precipitated during turbidimetric
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titrations could be calculated from a knowledge of the turbidity

: variation which occurred.
_; The last paper of this section is that of Sharma and Debi (1980).
i In this difficult to follow paper, the effects of using anomalous
[ diffraction, the RGD approximation, or the Eikonal approximation were
f& compared for the determination of sphere size and weight by inversion
i methods. Sharma and Debi investigated the ranges 1 < x < 25
. and 1.05 < n < 1,30, For spheres of x > 1 and m < 1.10, anomalous
‘: diffraction was the most useful approximation.
f' 1.3.1.5.2 Polydispersions
S The fundamental task of this section is to invert the turbidity
‘é relation for spheres,

v = Pra® Q. (\,m) n(a)da (27)
N ) ext
N so that n(a), the size distribution function, can be found. The
F accurate, remote, and nondestructive determination of n(a) is of great
ﬁ interest to scientists studying atmospheric aerosols, colloidal
; suspensions, and cell cultures to name just a few., The method of this
i section is to first replace the exact kernel, Qext’ with the approximate
R Q:it. Except where otherwise noted, the kernel Qiit applies only to
;S nonabsorbing spheres. I attribute the minor attention given to
5 absorbing spheres to the fact that the inversion of (27) is quite
. complicated even when ignoring absorption. The next step of the method
E 1s to measure the data function, 1, over a wide wavelength spectrum. The
E collective data set, t()), is then usually referred to as the multi-

spectral extinction.
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Equation (27) is a Fredholm integral equation of the first kind;
the inversion of such relations is an example of an ill-posed problem.
I quote the excellent introduction of Viera and Box (1985):

Such [11l-posed] problems fail to fulfill one (and
often all three) of the following conditiomns: (i)
existence of a solution (ii) uniqueness of a solutionm,
and (iii) continuity of the solution on the data
function. 1Ill-posedness leads to a loss of infor-
mation and to highly unstable solutions: that is,
small changes in the data function (such as will
always arise from experimental error) can produce
very large changes in the solution. (p. 4525)

With few exceptions, the papers of this section can be attributed
to three groups of researchers: (i) Shifrin and/or Perelman and their
associates, (ii) Box and McKellar and their associates, and (iii) Fymat
and his associates. Each of these groups attempted, with varying
degrees of success, to overcome the difficulties outlined in the
previous paragraph. I will present each group's work in the order
listed above, which 1s in order of increasing simplicity of method, and
follow these with the remaining works.

The material avajilable from the Shifrin-Perelman group all
originated in the Soviet Union between the years 1961 and 1980. I found
that the often poor quality of the Russian-to-English translations
hampered my ability to glean information from the articles; however,
translations aside, I also noted that the papers were presented in a
most unsatisfactory manner. First, many papers were written where a few
would have sufficed; the change from paper to paper was frequently
minor. Additionally, most of the papers extensively and necessarily

cross-referenced previous ones in the series. The necessity of the

cross-referencing arose from the fact that each paper was much too far
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from being self-contained; especially for the early papers, it was
virtually impossible to follow a given paper without all previous ones
at hand. Fortunately, the cross-references gave the exact location of
an 1tem; however, many bibliographies in the series lacked page numbers
in their citations thus making it more difficult to locate a given
reference. Another major problem with the group's work was that they

rarely discussed the implications associated with replacing Qext by

AD
ext’

Q Also along this line, it was often left unsaid that they were
considering only nonabsorbing spheres. The last major prublem
agsociated with the Shifrin-Perelman group's work was that of
inconsistent notation. For example, in the 18 papers I surveyed, T
appeared in nine different forms. Although the aforementioned items
definitely affected the readability of their collective works, I must
say in defense of the Shifrin-Perelman group that the content of thelir
papers still merits attention.

With the aild of Mellin's transformation, Shifrin and Raskin (1961)
were the first to substitute Qiit into (27) and invert .. to get n(a).
When they used anomalous diffraction, the method was termed the
transparency method; when they performed a similar inversion in which
Qext was derived from the RGD approximation, it was termed the
indicatrix method. In the first study, small measurement errors in T(X)
lead to large errors in the solution; Shifrin and Perelman (1963a)
partially solved this problem. Next, Shifrin and Perelman (1963b)
performed a mathematical test. The multispectral extinction was

calculated using a vy size distribution; then, this turbidity "data' was

used to invert (27). The Yv-distribution was reproduced rather well,.
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Similar tests were later performed for a power-law distribution
(Perelman and Shifrin 1968), a g-distribution (Perelman and Shifrin
1969), and a logarithmic distribution (Bakhtiyarov et al. 1966). The
latter test was slightly different in that exact Mie values were used
for the direct calculation of the '"data," 7()). Additionally,
Bakhtivarov et al. (1966) finally made mention of the fact that using
anomalous diffraction introduces some error, although they claimed it
was negligible. Quantitative error analysis was needed but did not come
until Shifrin et al. (1969¢). 1In this study, a size distribution was
assumed and m varied. The error arising from using Q:it instead of the
exact value was 3, 14, 18, and 20% for n = 1, 1.1, 1.3, and 1.5,
regspectively. To return to the early work, in Shifrin and Perelman
(1963c), the effect of various assumptions on the experimental data was
analyzed. Also, they showed how to use either graphic or tabular
presentations of ¢()) to invert (27); improvements were offered in
Shifrin et al. (1969b). Shifrin and Perelman (1964a) continued the
previous analysis, but this time only for tabular data presentation;
also in this paper, qualitative estimates were given of the effect on
the determination of n(a) of errors in the measurement of {(3}). In a
jump back to their earlier work, Shifrin and Perelman (1964b) provided a
compilation of the first three papers of the group: Shifrin and Raskin
(1961) and Shifrin and Perelman (1963a, 1963b). Later that year,
Shifrin and Perelman (1964c) discussed the effect of an almost
monodisperse y-distribution on the inversion of (27); additionally, they
concluded that although measurements of t were needed at all wavelengths

mathematically, 10-20 measurements over a broad wavelength spectrum
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would suffice. In one of their better works, Shifrin and Perelman
(1965) made a quantitative analysis of the effect of measurement errors
of 1t on the calculation of n(a). They found that t had to be measured
with an accuracy of 1-2%. Even though the mathematical tests of a
y-distribution had been done, experimental verification of the validity
of the inversion was lacking until Shifrin et al. (1966) provided it.
The particle spectra derived from the inversion of (27) and from electron
micrograph measurements were compared and reasonable agreement was found.
The best paper to start with if interested in Shifrir and Perelman's
inversion method is theirs of 1966. It 1is basically a review of their
work up to this date. Next, Perelman (1967a) improved the inversion

to give better agreement between the transparency and indicatrix
methods in the region of small phase shifts. Perelman claimed

that anomalous diffraction was valid for o<|m-1|<l whereas the RGD
approximation was only valid for |m-1,<<1. While anomalous diffraction
can be used for m = 2, it is certainly not a very good approximation
there; Perelman's claim should not have be.a made without qualification.
Perelman (1967b) departed from a more physical viewpoint to give a
thorough mathematical analysis of the inversion of first kind Fredholm
integral relations; this paper 1s a good source of information on these
functions. The only paper of the Shifrin-Perelman group to consider
absorbing spheres was that of Perelman and Punina (1969); unfortunately,
this paper was available only in German, so I can provide no more
information than that given in the abstract. A paper from this group

which I recommend avoiding is that of Shifrin et al. (196%9a). I am left

with the impression that this paper was never proofread. For instance,
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even the title has a misprint; the word "Special" appeared where the

'2 word "Spectral" should have. There are considerably more errors of this
Y

ﬁ sort and worse throughout the paper, and I do not know whether to place

s,

the blame on the authors or the translator. Either way, I see no reason

why we should try to decipher it. After a break of 10 years, Shifrin et

“
L% al. (1979) offered an improved inversion method in which the multi-
;\ spectral extinction data was approximated by modified Legendre

4 polynomials. To avoid divergence of the solution for the
’E Shifrin-Perelman inversion technique, it is necessary to know the short
; wavelength limit of t(A). The new approach of Shifrin et al. allowed

';: for the direct extrapolation of T(A) to short wavelengths; in all prior
"

E works, it had to be extrapolated separately. 1In the last papers of the
‘: series, Perelman and Shifrin (1979, 1980) finally allowed m(\) toc vary
:: as it should have all along. For their inversion, t must be measured

A"
.E over a broad wavelength spectrum; to assume m(A) is constant over this
; entire spectrum is foolish., The improvement was welcome and necessary
- but long in coming.

;E Next we consider the Box-McKellar group. I found considerable

Eg improvement in the clarity of their approach over that of the

XN Shifrin-Perelman group. The inversion of (27) under the Box-McKellar

§ scheme is dependent on the knowledge of the multispectral extinction and
.s of the zeroth and second moments of the size distribution; physically,
‘: these moments are N, the number of particles per unit volume, and E, the
;; total geometric cross section per unit volume, Details on extracting

E:E the two moments from the data were given in Box and McKellar (1976).

- The actual application of the moments to the inversion of (27) was given
2

-

v

¥

»
'

P P g " i N R ] Tt e T T T e A" Yt TR T AT R T A BT AT e LT,y e e MmN e s e N N et e e e
.‘4‘>.q‘v'.. LN L T A A v 0w . .\ -!. .“\l. ~ J'\"“J'-!'-’ AL J.,‘,-. s 7 T e A e




3,

-

el L,

RS

P

L N RS S RN

< //'./.‘t «¥d!

)

l&"&"-"i'.'."

A

(I
L)

k]
LA

.'ﬁ‘llillll

[N NN 22

¢ .
| G N N
*

42

in Box and McKellar (1978b). Their inversion was valid if ngt was
substituted for the exact value in the turbidity equation and if n(a)
vanished faster than at as a + 0 for some positive €; this latter
requirement is almost always met in practice. Almost simultaneously
with Box and McKellar, Fymat (1978a) introduced his own technique for
the inversion of (27). Box and McKellar (1979) compared their and
Fymat's method and found Fymat's approach to be a more general method
than their own. In a further comparison, Box and McKellar (1981)
illustrated how their, Fymat's, and Shifrin and Perelman's inversion
methods were all related. They also showed that the Shifrin-Perelman
technique was the most susceptible to errors. Also in this paper, a new
inversion was introduced, although a discussion of its merits were left
for an as yet unpublished work. In the conclusion of their 1981 work,
Box and McKellar argued as to the value of analytic inversion methods
based on anomalous diffraction; they cited Walters (1980) as having
claimed to use Shifrin and Perelman's inversion scheme "apparently with
some success." However, to quote Walters, "[Shifrin and Perelman's
method] must be regarded as being of little value for this type of
application." Walters was comparing the size distribution predictions
of three inversion methods with experimentally measured size
distributions of fogs formed in supersonic stream flows. Besides
Shifrin and Perelman's method, he considered an empirical approach and a
matrix inversion method. Please note that equation (10) of Walters,

which gives in for nonabsorbing spheres, is completely wrong; see

t

Table 1 for the correct expression. We cannot conclude that Box and

McKellar's inversion scheme is as poor in application; however, Box and
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McKellar's optimistic interpretation of Walters' (1980) conclusions
makes me wary of any of their claims. The last paper of this group is
an outstanding one by Viera and Box (1985). I have already quoted some
of their introduction at the beginning of this section. In this paper,
an analytic eigenfunction theory was used for the inversion of (27), and
to fully exploit the analycity, Q:ic was used instead of the exact Mie
value. Tests were performed to find the effects of certain assumed
knowledge of the solution on the ill-posedness of the problem. The
conclusions they reached on what the important factors were should be of
interest to those attempting remote sensing experiments in which data
inversion must be performed.

Finally, we consider the work of the Fymat group. As mentioned
earlier, Fymat (1978a) developed his inversion technique at nearly the
same time as Box and McKellar (1978b). Whereas the Box-McKellar
approach required a knowledge of the two moments N and G, Fymat (1978b)
showed that his method required only a knowledge of G. Fymat and Smith
(1979) continued to expound the virtues of Fymat's method. Since it
requires less information than the Box-McKellar method, Fymat's method
is simpler than that of the former. Box and McKellar (1978b) concurred
with this evaluation. Fymat and Smith gave a nice, concise listing of
the conditions necessary for the validity of both the Fymat (1978a) and
the Box and McKellar (1978b) inversion techniques. Fymat and Smith
noted that equation (10) of Fymat (1978a) was invalid because the
integral diverges; the results were unaffected however.

The remainder of this section is devoted to three papers not

associated with the previous groups' works. I have already covered




AWK ERRN ]

e A N

e s

l.l )

WA i

”»-

a R LAY

PTG SL

Pl et A SR RN

44

Walters (1980) under the Box-McKellar review. The other two papers are
Smith (1982) and Klett (1984). Smith (1982) generalized Fymat's (1978a)
inversion technique to allow for the variation of the complex refractive
index with wavelength. He used van de Hulst's (1957, p. 179) expression
for Qiﬁt for absorbing spheres as the kernel of (27). Smith's paper is
nicely presented and mathematically complete. Klett (1984) was not
aware of Smith's (1982) paper for he cited Perelman and Punina (1969) as
the only paper prior to his to consider absorbing spheres for the
inversion of (27)., Klett, like Smith and Perelman and Punina, used van
de Hulst's (1957, p. 179) equation for Q:ﬂc for absorbing spheres. He
gave the expression in his equation (6), but it 1s given incorrectly.
The last term of his equation (6) should contain the factor (cosg/p)
squared, not to the first power. Klett otherwise has an excellent paper
here. He was the first to really address the practicality of the
various inversion methods based on anomalous diffraction. Klett
developed a new inversion technique that may be as good or better than

all previous methods. He empirically adjusted Qiﬁ to give better

t
agreement with the Mie theory before he used it as the kernel of the
turbidity equation. Although Klett's inversion scheme may be best, we
must wait for conclusive experimental verification of all of the
analytic inversion methods based on anomalous diffraction before we can

make such a determination.

1.3.2 Right Circular Cylinders and Discs

The infinite right circular cylinder 1s another particle shape for

which an exact calculation of the light scattering can be made, vet an

infinite cylinder is a physically unrealistic particle., What we
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actually wish to consider 1is a cylinder with an axial ratio
(length:width) so large that end effects can be ignored. Bohren and '
Huffman (1983, p. 211) determined that in the limit of Fraunhofer
diffraction, a cylinder could be considered essentially infinite if the N,
axial ratio was greater than 10:1. Since van de Hulst (1957, Ch. 11) »
o
developed his approximation from a consideration of Fraunhofer ;
-
diffraction, I will assume that the same axial ratio applies to A
anomalous diffraction. Also in this section, I will discuss the thin
disc. Although no exact theory applies, a disc is, after all, just a
short cylinder. '
Unlike the sphere, the cylinder has shape anisotropy; consequently,
the optical efficiencies are polarization dependent in the exact
theory. Since anomalous diffraction is a scalar theory, however, no
polarization dependency 1is shown. Also because of the cylinder's shape
anisotropy, the angle of orlentation becomes an important parameter. e
Even with this additional parameter, we will find that anomalous

diffraction works quite well for the cylinder and yet is still simple.

1.3.2.1 Single Cylinders and Discs i
Van de Hulst (1957, p. 313) obtained a closed~form solution for E:

Q:it of an iInfinite, nonabsorbing cylinder at normal incidence. Little ?
discussion was offered, and the expression did not reappear until Kerker i
(1969, p. 290) cited it in his review of anomalous diffraction. Later %
that same year, Bryant and Latimer (1969) generalized van de Hulst's ;
work by giving Qiit and Qigs for arbitrarily oriented, absorbing Ee
infinite cylinders; they also gave the same quantities for a thin disc. E
o

AD
A closed-form expression for Qiﬁ or QabS was not yet offered for the

t
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cylinder, but such expressions were given for the disc (see Table 2).
In the overview, I noted that ngt approaches the correct asymptotic
value of two as x + o for many particle shapes, the nonabsorbing disc is
not such a shape. To the incoming light, the face of an infinite disc
would appear as a slab; the phase shift through all portions would be
the same. For the case of no absorption, ngt for a disc takes the form
of an undamped, oscillating function (see Table 2); as x + =, ngt can
assume any value between two and four,

In 1970, closed-form expressions for QAD and QAD for the

ext abs

absorbing, infinite cylinder at arbitrary incidence were finally given
by Cross and Latimer., The angle of incidence was defined by the normal
to the cylinder axis and the incident direction. Cross and Latimer
noted that at very oblique incidence, refraction effects could not be
ignored, so they offered an empirical factor to correct for these
effects. Cross and Latimer's paper was outstanding in its straight-
forwardness and simplicity. Thelr paper was quite a contrast to
Stephens' (1984). Stephens apparently unaware of the previous results
of Cross and Latimer, obtained his own closed-form expressions for Qigt
and Qigs for the arbitrarily oriented, absorbing, infinite cylinder. 1In
Stephens' paper, the angle of incidence was defined by the cylinder axis
and the incident direction. Stephens' expressions for ngt and Qigs
appear at first sight to be quite different from those of Cross and
Latimer, but I have shown that the expressions are equivalent (see Table
3). Stephens' relation for Qigs was actually not different at all,
rather it suffered from the following typographical error: the L. in

1

his equation (21) should have been an L. Stephens' paper has many other

Y
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errors, some typographical, some not. Stephens began his paper

rather well by giving the exact theory in detail. He went on to find

the expressions for QAD and QAD and used the former to find 6 for
ext abs ext

two cases: (1) a monodispersion of randomly oriented, nonabsorbing

cylinders, and (ii) a polydispersion of oriented, nonabsorbing

cylinders. Tor the latter case, Stephens' equations (23), (24), (26),

and (27), giving respectively G, 1, g the effect radius of the

£
distribution, and veff’ the effective variance of the distribution, are
all incorrect. These four equations, as they stand, are valid only for
spheres, not cylinders. Assuming normal incidence, the factor naz in
each equation should be replaced by the factor 2al, where L is the
length of the cylinder. 1In his equation (26), the factor na3 should be
replaced by the factor waZL. Fortunately, the graphs resulting from
these equations were unaffected by the errors. I think Stephens' paper
illustrates the importance of accurate proofreading very well. In
addition to the aforementioned errors, Stephens also badly misinter-
preted the meaning of n'; since 1 discussed this previously, I will not
repeat it here. Stephens has assured me that an errata will be
forthcoming.

As with spheres, papers comparing the predictions of anomalous
diffraction to those of the exact theory can also be found for
cylinders. The first, for real m only, was that of Sharma et al.
(1981). They compared the anomalous diffraction, RGD, Eikonal, and
first-order corrected Eikonal (FCE) approximations predictions of the

forward scattered light intensity with those of the exact theory for

A = 0.6328 ym, 1.05 < n < 1.5, and 0.2 < x < 25. The first-order
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p
g; correction to the Eikonal approximation was not elaborated on; it makes
B the Eikonal approximation much more complex, but the results are
:: considerably improved. Whereas no similar study was done for spheres
N with complex m, such a study was performed for cylinders with complex

- m by Sharma and Somerford (1983). The same approximations as in Sharma
EE et al. (1981) were compared in the same way for 1.05 < n < 1.15,
'2 10~3 <n<1l, 1 <x <20, and A = 0.6328 uym. I have already cited the
-~ usefulness of such papers and will not do so again. The final

; comparison paper, similar to the previous two, is that of Sharma and
.f. Somerford (1982)., Like the previous two papers, the same approximations
‘3 were compared with the exact theory. Unlike the previous two papers,
E: the 0° < 6 < 60° scattered light intensity was used for the comparison.
;: The incident light was assumed normal to the cylinder axis; the
- scattered light intensity in the plane of the normal was calculated.

EE The authors claimed that anomalous diffraction was a poor approximation
x to the exact theory for all trials, but their figures indicated that it
worked fairly well for 8 < 30° and n < 1.5. Part of the reason for the

N
f: poor predictions of anomalous diffraction may lie in the expression that
~
'E Sharma and Somerford used for their anomalous diffraction calculations.
;_ Sharma and Somerford purported to have used van de Hulst's (1957,

23 p. 184) approach to getting S(8) from S(0), yet I can in no way
’:f determine how. Their S(8) agrees with my equation (16) for ¢ = 0°

A

:_ except that where I have the factor exp(-1ik£6) under my integral, they
-E have the factor cos(ik£8) = Re{exp(~ik£0)}. My more general expression
jg reduces to van de Hulst's for spheres and is in agreement with Meeten
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(1982b); consequently, I suspect Sharma and Somerford's expression to be
in error.

1.3.2,2 Monodispersions

Only Bryant and Latimer (1969), Champion et al. (1978), and
Stephens (1984) considered cylindrical monodispersions. I have said all
that I will about the latter paper. Bryant and Latimer gave a nice
synopsils of methods for calculating the turbidity of randomly oriented
cylinders and discs. Bryant and Latimer noted that a thin disc, for
example, may present a dimension to the incident beam which is in
violation of the condition for the applicability of anomalous
diffraction; however, they concluded that few enough particles would be
oriented at such extremes so as not to affect the results significantly.
The paper by Champion et al. (1978) was previously discussed in section
1.3.1.,2, and my comments can be found there. They derived expressions
for the refractive index increment of colloidal spheres and oriented
discs in the Rayleigh, RGD, and anomalous diffraction approximationms.

1,3.2.3 Polydispersions

Stephens (1984) is the only source here. He considered only
aligned cylinders. Because of the many errors in Stephens' paper, I
recommend that it be used with extreme caution.

1.3.2.4 Biological Particles

Bryant et al. (1969a) is the only source here. They modeled
E. Coli cells as infinite cylinders with good results. For further
details, consult section 1.3.1.4 where this paper was reviewed.

1.3.3 Cubes, Square Plates, Hexagonal Plates and Octagonal Plates

Anomalous diffraction is of greater utility for cubes and thin

square, hexagonal, or octagonal plates than for spheres and cylinders
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Z
j because no exact solutions exists for these particle shapes. Yet
crystals of these shapes are often encountered in nature, the hexagonal
i plate of ice being a familiar example. The RGD approximation can be
15 applied to these shapes but is not as accurate as anomalous diffraction
3 in the size range 1 < x < 20.
3 1.3.3.1 Single Particles
The first paper of this section and the only one to consider cubes
‘ was that of Napper (1967). He derived Q:it assuming real m for three
_E simple cube orientations: face, corner, and edge incidence. Table 4
lﬁ gives the expressions. The relation for Qiﬁt of a nonabsorbing cube at
face incidence is the same as that for a nonabsorbing disc at face
'; incidence; therefore, the cube is another particle shape for which Qigt
o
f does not approach its correct limit as x + ». Napper made an admittedly
; crude attempt to model a monodispersion of randomly oriented cubes by
Eé assuming that the probabilities of face, corner, and edge incidence were
i 3:6:4, respectively. Napper's paper was clear and concise; I think he
. demonstrated the need for approximate theories rather nicely. Kerker
; (1969, p. 127) gave a review of Napper's work.
E Next, Champion et al. (1979a) used anomalous diffraction to
successfully predict experimentally observed transmission changes in
‘: shear-flow oriented monodispersions of kaolinite crystals. The
; transmission changes were induced by varying the velocity gradient of
' the orienting medium, the particle size, the wavelength, or the crystal
; concentration. Kaolinite crystals are hexagonal plates but are rarely
‘5 found in perfect form, thus square and octagonal plates were considered
as models of chipped crystals. The crystals were assumed to be thin and
:
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nonabsorbing; a 10:1 axial ratio was used in all calculations. Champion
et al. assumed that the light traversed the thinnest dimension of the
crystals; they provided expressions for ngt for all three crystal
shapes at various orientations. Champion et al., in contrast to Napper
(1967), were difficult to follow and some of the notation was poor.

1.3.3.2 Monodispersions

It is evident from the previous section that Napper (1967) and {
Champion et al. (1979a) applied their approximations to monodispersions;
however, I will not repeat my comments here. The only other paper to
consider is that of Meeten (1979). Meeten used anomalous diffraction to
derive an expression for the optical anisotropy parameter. For an
optically anisotropic particle of optic axes, a, b, and c. with
refractive indices of mos W, and m, = m, respectively, the optical
anisotropy parameter is proportional to (ma - mb). A previous
formulation of the optical anisotropy parameter, which was derived from
a dipole approach, predicted no size dependence for the parameter, yet :
size dependence was observed experimentally. Meeten found that his
approach, using anomalous diffraction, gave a satisfactory explanation
of the experimentally observed size dependence of the optical anisotropy
parameter for weakly birefringent kaolinite crystals. Meeten considered
the same crystal shapes as Champion et al. (1979a), i.e., the square,
hexagonal, and octagonal plates. Immediately following equation (18) of
Meeten, there is a misprint which I feel must be corrected. In a single
gentence, Meeten claimed that the size parameter x was dimensionless
then gave it as x = %k which is dimensional. Meeten must have intended

x = Lkt where t is the thickness of the particle over which the light 1is i
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transmitted. The reason I found the error so troubling was that two
graphs soon followed in Meeten's paper in which x was a coordinate.
1.3.4 Spheroids

The spheroid, an ellipsoid of revolutio:, has become an
increasingly popular shape with researchers over the past two decades.
Only recently has an exact solution for light scattering by an ellipsoid
become available (Asano and Yamamoto 1975). The exact solution is
rather cumbersome to use in practice, so the anomalous diffraction
expressions for the optical efficiencies are still welcome. We will
assume the spheroids to have axes of radii a, a, and b; the axial ratio
is given by v = b/a. For the oblate spheroid, v < l; for the prolate
spheroid, v > 1. The popularity of the spheroid is due to the fact that
it can be used to approximate other particle shapes. For instance, a
highly oblate spheriod is an excellent model of a disc while a highly
prolate spheroid is an excellent model of a cylinder. On the other
hand, as the axial ratio approaches unity, the spheroid reduces to a
sphere. The deviation of the axial ratio from unity 1is usually referred
to as the asphericity.

1.3.4.1 Single Spheroids

The first paper of this section is that of Bryant and Latimer
(1969). This 1is an excellent paper on anomalous diffraction in general,
and I have already cited it in the sphere and cylinder sections. Bryant

. AD AD
and Latimer's approach to obtaining Qext and Qabs of the spheroid was to

model it as a sphere with a modified phase shift; see Table 5 for the

results. They provided superb graphs illustrating the effect of

AD
abs’

AD
particle shape (sphere, disc, cylinder, and cube) on Qext and Q
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Bryant and Latimer also gave a fine review of ways to calculate aext
and 6abs for monodispersions of various (cylinders, discs, and spheroids)
randomly oriented particles. Furthermore, they showed that for small
asphericity (v = 2), a randomly oriented monodispersion of spheroids
could be approximated very well by a monodispersion of spheres of equal
volume. One point I disliked about their graphs was that m was not
usually given, thus the graphs seemed untied to reality. Latimer
(1975a) developed an improved, yet considerably more complex hybrid
method to predict light scattering by spheroids; the hybrid was based on
both anomalous diffraction and Mie theory. First, anomalous diffraction
principles were applied to a spheroid of given size, shape, orientation,
and refractive index, and the results were used to define an equivalent
sphere; subsequently, the exact Mie theory was used to calculate the
scattering of this equivalent sphere. In the method Latimer denoted
AM-I, the radius of the spheroid was redefined; in the method he denoted
AM-II the refractive index of the spheroid was redefined. Latimer used
the RGD approximation in an identical way to get the similar methods
RM-1I and RM-II. Latimer's paper was often vague; at times it was not
clear which method or which particle (equivalent sphere or spheroid?) he
was discussing. For a monodispersion of randomly oriented spheroids,
Latimer presented graphs of scattered intensity versus angle in which he
compared his various methods. I did not see the value in this since he
had not yet determined how well any of the approximations compared with
experimental observations (the exact solution for spheroids was not

available at this date). In Latimer and Barber (1978), the predictions
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of scattered light intensity of Latimer's (1975a) methods were compared
to the same predictions of the extended boundary condition method (EBCM)
of Barber and Yeh (1975). All calculations were for real m only. The
EBCM solves Maxwell's equations numerically for spheroids and other
particle shapes. All of the methods were in good agreement except for
AM-1., Regardless, Latimer and Barber felt compelled to include it in
their already overcrowded graphs. In another follow~up to Latimer
(1975a), Latimer et al. (1978) used the former's methods AM-II, RM-I,
and RM-II to compute and compare scattered light intensities for several
spheroid axial ratios and at different orientations. Latimer et al.
presented excellent polar plots of the angular scattering intensity for
the various spheroilds considered. Since the exact Mie theory was used,
angular intensities could be calculated at all angles; however, since
the equivalent spheres were derived from an anomalous diffraction
congideration in the AM-II method, I question the validity of large
angle scattering calculations for AM-II. Latimer et al. went on to give
a nice discussion of various particle~sizirng apparatus and techniques;
they determined that for spheroids, the shape and orientation would most
affect the results; the refractive index effects would be secondary.
Latimer informed me that equations (A2) and (A3) of Latimer et al. (1978)
were incorrect; they should be corrected as follows (in their notation):
(1) in (A2), the cos (8/2) in the first term and the sin (6/2) in the
second term should be interchanged; (ii) in (A3), the cos ¢ in the
gsecond term should be a cos w. Next, Latimer (1980) compared his
approximate methods' (AM-II and RM-I) predictions of aext for a

monodispersion of randomly oriented spheroids with published values of
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the same derived from from the exact theory for m = 1.33 and m = 1.33 -
0.051i (Asano and Sato 1980). The agreement was even better than Latimer
expected; even the worst agreement, for very oblate spheroids, was
within 10Z of the exact values.

Another method for predicting light scattering by spheroids was
discussed in a 1982 paper by Ravey and Mazeron. The method was termed
the physical optics approximation (POA) in order to distinguish it from
the simpler approach of geometric optics. In the POA, Maxwell's
equations are integrated over the surface of the scatterer; since the
fields at all points on the scatterer are not known in general, they
must be approximated. In the approximation, it is assumed that the
fields at any point on the surface can be given by Fresnel's equations
evaluated on a plane tangent to the point. In this paper, Ravey and
Mazeron presented the POA and noted how it could be applied to part of
the domain of anomalous diffraction; for the POA, 2x|m-1|>>1 is
required. Erroneously, Ravey and Mazeron claimed that for anomalous
diffraction, both n and n' had to be near unity; n' << I is the correct
requirement. In a follow-up study, Ravey and Mazeron (1983) compared
various light scattering predictions of the POA with those of the Mie
theory, the RGD approximation, anomalous diffraction, and Fraunhofer
diffraction for spheres and with those of the exact method, EBCM, the
RGD approximation, and anomalous diffraction for spheroids. Real and
complex m were considered. Ravey and Mazeron presented their results in
easy-to-read graphs. For its complexity, the POA does not seem to work
as well as anomalous diffraction for spheres; it is better for certain

spheroid orientations, however. The anomalous diffraction computations
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for spheroids were similar to the simple method of Bryant and Latimer
(1969); it would have been interesting to see the POA compared to
Latimer's (1975a2) methods for spheroids. Ravey and Mazeron are, like
many others, guilty of misinterpreting n'. The called n' = 0.01 "small"
absorption, yet gave no indication of w;velength. I suspect from their
content that Ravey and Mazeron were assuming wavelengths of the order of
visible light, hence n' = 0.0l would imply "very strong" absorption. In
a continuance of the previous work, Ravey (1985) explored the dependence
on real refractive index of the first extrema in the angular light
scattering pattern of spheres and spheroids. He compared the
predictions of the POA, the RGD approximation, Fraunhofer diffraction,
and anomalous diffraction. As Ravey and Mazeron (1983) had done, Ravey
presented his results in excellently prepared graphs. Ravey's study
showed how good anomalous diffraction could be considering its
simplicity.

1.3.4.2 Monodispersions

Bryant and Latimer (1969) and Latimer (1975a, 1980) all considered
monodispersions. For details on these papers, consult the previous
section. The only other papers to consider in this section are those of
Khlebtsov and Shchegolev (1977), Khlebtsov et al. (1978a), and Meeten
(1980c, 1982a).

Khlebtsov and Shchegolev (1977) and Khlebtsov et al. (1978a) are
papers very much like those of Box and McKellar (1978a) and Fymat and
Mease (1978) in that while the study of the inverse problem of light
scattering was their ultimate goal, the direct problem was considered

first so as to gain insight into the dependencies of the important
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parameters; consult section 1.3.1.3 for further details. Khlebtsov and
Shchegolev (1977) used anomalous diffraction expressions for Qext to

calculate aex , t/N, w, and s, the structure factor, for a monodisperse

t

system of randomly oriented prolate spheroids. Equation (26) of this

thesis gave w; it is related to s by

,aQext -1
{ )

ad

8 = w (28)

Note that for this study, Qext would be replaced with aext in (26) and
(28). The dependence of the four parameters on real m, x, and ¢ was
desired for future research on inversion methods for spheroids; for
further information on these inversion methods, consult all of section
1.3.4.4. Khlebtsov et al. (1978a) conducted a completely analogous
study for randomly oriented oblate spheroids. Additionally, however,
they calculated the same four parameters using the RGD approximation.
Both Khlebtsov and Shchegolev (1977) and Khlebtsov et al. (1978a)
provided excellent tables illustrating the dependence of 5ext on w and ¢
for various axial ratios.

Meeten (1980c) is a good, simple paper. In {it, the Rayleigh, RGD,
and anomalous diffraction approximations were used to find the effect of
particle shape on the refractive index of a colloidal dispersion. The
dispersion was modeled as a collection of randomly oriented,
nonabsorbing spheroids; the effect of asphericity on the refractive
index of the dispersions was predicted to be large by all three
approximations. Interestingly, the expressions Meeten derived from all

of the approximations approached the same limit as (m-1) - 0 and x + O.
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Meeten (1982a) derived integral expressions for the linear
birefringence and linear dichroism of a colloidal dispersion of nearly
aligned, optically anisotropic, nonabsorbing spheroids. This paper
continues the work begun in Meeten's 1980a and 1980b papers; since the
application of anomalous diffraction is essentially the same here, I
refer the interested reader to my reviews of the 1980a and 1980b papers
in section 1,3.1,2.

1.3.4.3 Biological Particles

Many biological cells could be modeled as being spheroidal;
however, the literature on anomalous diffraction in which this is done
is scarce. The first paper to appear along these lines was that of
Bryant et al. (1969a). They used anomalous diffraction applied to a
spheroid to model scattering by yeast cells and spinach chloroplasts.
Bryant et al.'s theoretical predictions were in good agreement with
experimentally determined light intensities from both of these
particles. For further detzils on this paper, I refer the reader to
section 1.3.1.4. Later, Latimer (1975b) used the AM-II method of his
1975a paper to try to theoretically predict the experimentally observed
changes in extinction that arose from structural changes in blood
platelets. The actual structural change is that the originally
disc-1like platelets become nearly spherical upon activation by certain
compounds. The spheroid then was a useful model since it could be used
to represent both extremes of the platelet shape. Latimer's theoretical
predictions were in agreement with experimental observations, thus the
value of his simple model became evident. Lastly, Ravey (1985) explored

the evolution of the first extrema of the angular scattering intensity
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as the refractive index was changed. He considered spheres and
spheroids and assumed both were nonabsorbing. I have already reviewed
this paper under the single spheroid section, and my comments will not
be repeated. I included this paper here because it arose out of Ravey's
interest in the determination of blood cell size from small angle light
scattering measurements. Blood cells are nearly spheroidal in shape.

1.3.4.4 Inversion Techniques

The papers In the following section on monodispersions are the last
of this literature review. Unlike for spheres, no studies were done on
analytic inversion techniques for sphercidal polydispersions.

1.3.4.4.1 Monodispersions

Shchegolev and Klenin (1970, 1971), both of which were reviewed
under section 1.3.1.5.1, showed that for spheres, measurements of T(})
over a narrow wavelength spectrum could be used to find the size,
concentration, and refractive index of the spheres if the wave exponent
and structure factor were also known. For a spheroidal monodispersion,
these parameters (size, concentration, refractive index) can also be
calculated, but they applv to a sphere of equal volume. Shchegolev et
al. (1977) used mathematical tests to find the error incurred by
considering such equivalent spheres. The direct calculations of t/N, w,
and s for prolate spheroids from Shchegolev and Klenin (1977) were used
as the input "data"; then, the size, concentration, and refractive index
of equivalent spheres were calculated from this "data." 1 do not think
this was very good test; since the "experimental data" arose from the

anomalous diffraction approximation, some real information was

necessarily lost. The actual error is preobably somewhat higher than
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Shchegolev et al. reported. As expected, use of the equivalent sphere
O method gave best agreement for small asphericity. A similar test was
performed in which the RGD approximation was used. Khlebtsov et al.
(1978b) performed an identical analysis to that of Shchegolev et al.

N (1977) except that they considered oblate spheroids. The direct
calculations of T/N, w, and s for oblate spheroids from Khlebtsov et al.
(1978a) were used as the input "data." The final paper of this

literature review is that of Khlebtsov et al. (1978c). They showed,

4

o+ using both the RGD and anomalous diffraction approximations, that the
'

- minor semi-axes and weight concentration of highly aspheric, randomly
b oriented spheroids could bte calculated from a knowledge of the wave

§

Y exponent. The spheroild could be highly oblate or prolate, and the

o predicted values could be very accurate depending on the values of the
K wave exponent and axial ratio.
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Chapter 2

THEORY

2.1 The Problem

In the usual considerations of diffraction, an arbitrary wave is
incident from the -z direction on certain apertures in an infinite,
perfectly conducting thin screen S. Assuming the apertures to be
located in the plane z = 0, then the field at z > 0 will be in
directions other than the incident due to the presence of the apertures.
For many purposes, it is sufficient to consider the incident wave to be
a scalar wave. If the wavelength of the incident wave is small compared
with the dimensions of the aperture, then Kirchoff's (scalar)
mathematical formulation of Huygen's principle can be used to calculate
the field at z > 0 which we will call the diffracted field. 1In order to
use Kirchoff's formula, it 1s necessary to know the value of both the
wave and its gradient over every portion of the plane z = 0; however,
these values 1in general are not known, thus approximate values must be
used. In the Kirchoff approximation, the values of the wave and its
gradient are assumed to be zero everywhere on S; these values in the
apertures are assumed to be those of the incident field. Further
simplication arises in the calculation of the diffracted field if we
assume that the observation point is many wavelengths removed from the
apertures, in other words, 1f we assume we are in the far field; this
lagst assumption confines consideration of diffraction to what is
historically referred to as the Fraunhofer zone. In fact, when
diffraction {s mentioned in the literature, it {s usually Fraunhofer

diffraction which i{s meant.
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Once the diffracted field arising from the apertures is known,
Babinet's principle becomes useful. Babinet's principle relates the
diffracted fields of a particular diffracting system to those of its
complement. As a simple example, let us consider a screen with a
circular aperture of radius a cut into it; the complementary screen is a
disc of radiué a. Babinet's principle tells uslthat the diffraction
patterns of both systems are equivalent, in fact, the diffraction
pattern by a perfectly opaque sphere of radius a is also the same within
the limits of the approximation.

Van de Hulst derived his anomalous diffraction approximation from
the considerations of the previous two paragraphs, although he
generalized them to allow for transmitted light. Since anomalous
diffraction was derived from scalar postulates, the polarization state
of the incident radiation is not a factor in the calculations of Qext’
Qabs’ and dCsca/dQ. In general, however, these efficiencies are
functions of the polarization state of the incident beam. An exception
is the homogeneous sphere; both Qext and Qabs are polarization
independent due to the sphere's symmetry. I consider the polarization
independence of anomalous diffraction to be its greatest disadvantage.
Perhaps this deficiency céuld be overcome by the application of vector
formulations of diffraction to anomalous diffraction; this is the

purpose of this thesis and the derivation will follow.

2.1 Vector Formulations of Anomalous Diffraction

In the next two sections, anomalous diffraction expressions will be

developed from a consideration of both the Kirchoff and Kirchoff-Kottler
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vector formulations of Huygen's principle. The derivation will proceed
analogously with that of section 1.2 except that here I will consider
only Qext and dcsca/dﬂ for a right circular cylinder; there is no need
to complicate matters with exotic particle shapes until the validity of
the approach is either proved or disproved. The right circular cylinder
is probably the simplest shape-anisotropic particle to consider with an
anomalous diffraction approach. The cylinder will be assumed to have a
length of L and a width of 2a.

Only steady state problems will be considered. The time factor of
the electric (E) and magnetic (ﬁ) fields will not be explicitly written,
but it will be understood to be exp(-iwt) where w is the angular
frequency and t is the time. The right-hand Cartesian coordinates &, n
1’ 62 and é3. 1
will let the cylinder's long axis lie along the £ axis and let the r

and z will be used with corresponding unit vectors &

incident beam be from the -z axis. Since any polarization state can be
expressed as some linear combination of two mutually orthogonal
polarization states, I will consider the two cases of transverse
magnetic (TM) and transverse electric (TE) polarizations. Assuming
normal incidence, and designating the incident wave vector as io = ké3,
we find the following expressions: (1) for TM polarization, the
incident fields are given by

E =E &

o o &1 exp(ikoz)

Ho = Ho é, exp(ikoz)

(11) for TE polarization, the incident fields are given by
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Eo = -Eo 62 exp(ikoz)
(30)

Ho = Ho el exp(ikoz)

Outside the diffracting system, all space will be considered to be
homogeneous and isotropic with a real index of refraction equal to one.
With the preceding points in mind, I will begin.

2.2.1 Application of the Kirchoff Formula

Jackson (1975, p. 432) provided Kirchoff's vector formulation of
Huygen's principle. 1In this approach, the scalar Kirchoff formula is
simply applied to each of the six field components (three each from E
and H).

For the vector case, equation (6) becomes

4
Cext kz Re {S(O) . éoE} = G Qext (31)

where §(0) is the vector forward scattering amplitude, and éoE is a unit
vector in the direction of polarization of the incident electric vector.
Appendix A provides details of the calculation of $(0) from the Kirchoff
formula. In analogy with van de Hulst, we will generalize S(0) to

include rays transmitted through the cylinder, thus equation (51)

becomes

2
S0 = 3 6y x (8, x &) fA(l-e'“’)dsdn (32)

The substitution of & = & for a TM wave or -&_ = & for a TE wave
1 oE 2 oE

into equations (31) and (32) will give equal values of Qext; therefore,
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2222”8

the modification of anomalous diffraction with the Kirchoff formulation
o of vector diffraction still fails to predict a polarization dependent

extinction efficiency.

N To calculate the differential scattering cross section, we need to
; add a factor to 5(0). By analogy with equation (16), we get
Y]
o
<
o 2
P - - -
y 3(0,6) = k (i:cose)[ék x (6. x 8 )] /. (l-e iQ)eiksinB(Ecos¢+nsin¢)dsdn
3 (33)
o
»
) where ék is a unit vector in the direction of observation. From a
¥ consideration of Figure 2, ék can be written
<4
b ék = gin O cos ¢ é1 + sin 6 sin ¢ é2 + cos B 63 (34)
N
W Now, we must consider the two polarization states. For T™M
L
» polarization éoE = el; for TE polarization, € g = "8, For either case,
D only the factor [ék X (é3 X éoE)] is affected in equation (33), so I
3
: will give the remainder of the equation the designation k(F)1 From
Y
" equation (17), for the TM case we find
- dc
. SC8 . F [sin26 cosz¢ + coszel (35)
19 dQ
i For the TE case, we get
"
'l
> dgca = F [sinze sin2¢ + cosze] (36)
;
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An inspection of (35) and (36) shows that dcsca/dﬂ is predicted to be
polarization dependent. However, if we recall that in equation (l6) we
required & to be small, then sin 6 = 8, and sinze is even smaller.
Consequently, the first terms of both equations (35) and (36) are
negligible within the limits of the approximation, thus dCsca/dﬁ is no
longer predicted to be polarization dependent.

2.2.2 Application of the Kirchoff-Kottler Formula

Bouwkamp (1954) gave the details of the Kirchnff-Kottler vector
formulation of Huygen's principle in his excellent review of
diffraction. When the scalar Kirchoff formula is applied to the six
field components, the six wave functions so obtained do not satisfy
Maxwell's equations in general. Kottler noted that this difficulty
could be overcome by introducing additional te-ms in the Kirchoff
formula representing the effects of fictitious line charges along the
rim of the aperture. In this section, the Kirchoff-Kottler relation
will be used to modify anomalous diffraction. It 1is hoped that
Kottler's improvements of the Kirchoff relation will allow for the
prediction of polarization depondent extinction and differential
scattering cross sections.

Again, we nead to know 5(0). Appendix B provides the details of
the derivation of S(0) from the Kirchoff-Kottler relation. By analogy
with van de Hulst, we generalize 3(0) to include rays transmitted

through the cylinder, thus equation (57) becomes

2
5(0) = 7= {[e x (8, x 8 )]

- ey x (85 x (8 x (8, x & N1} IA(I—e—i¢)dEdn (37)
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Chapter 3

CONCLUSIONS

The extinction efficiency and differential scattering cross section
of a cylinder at normal incidence were calculated with vector-modified
anomalous diffraction expressions. 1In one case, the modification was
based on the Kirchoff vector formulation of Huygen's principle. In 3
another case, the modification was based on the Kirchoff-Kottler vector
formulation of Huygen's principle. In neither case did the modification
enable the polarization dependency of Qext to be predicted. In both
cases, the polarization dependence of dcsca/dQ was predicted, but within
the limits of the approximation, i.e., for small angle light scattering,
the polarization dependence vanished. In conclusion, both modifications
of anomalous diffraction must be considered failures since no new
information is gained with the added complexity.

The fundamental deficiency of both methods seems to lie in the
Kirchoff assumption that the exact fields at the diffracting obstacle
can be replaced by the unperturbed incident field. This assumption
seems reasonable in light of the anomalous diffraction assumption that
[m-1]<<1. 1If some knowledge of the exact functional form of the fields
at the diffracting obstacle could be obtained, perhaps the polarization
dependence of the extinction efficiency and differential scattering
cross sections could be found in a simple way. However, I doubt that
the resulting expressions would maintain the simplicity that makes

anomalous diffraction so useful.
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Jackson (1975, p. 438) provided the expression, derived from
Kirchoff's vector formulation of Huygen's principle, for the field
diffracted by an aperture located in a thin, perfectly conducting
screen, Assuming the radiation 1s incident from the -z direction and
that the aperture is in the z = 0 plane, it is

ikR

- 1 = - e
ED " v x IA[h X E]z-O - d&dn (46)

where ED is the diffracted field in the region z > 0, V is the three-
dimensional del operator, i 1s a unit normal on the aperture pointing
into the space z > 0, E is the field in the plane z = 0, R is the
distance from a source point on the aperture to the observation point
P, and £ and n are source-point coordinates in the aperture. The
integration is taken over the aperture area, and the del operator is
applied to the source-point coordinates.

If the observation point is located far from the aperture

(kR >> 1), then kR can be expanded as
kR = kr - k& °T' + h.o.t. (47)

wh e r 1s the distance from the origin (assumed to be located somewhere

in the aperture) to the observation point, & 1is a unit vector in the

k
direction of observation, and ' is a vector from the origin to the
source-point. If we neglect the higher order terms (h.o.t.), then we
are considering Fraunhofer diffraction.

Consider Figure 2. The aperture area is equal to the projected

area of the cylinder under consideration. From the definitions of 8 and

¢ in the figure, we can rewrite (47) as
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kR = kr ~ ksinO(£cos¢ + nsing) (48)

If we substitute (48) into (46) along with the usual Kirchoff assumption
that the field in the aperture can be approximated by the unperturbed

incident field, i.e., E = Eo éoE’ we get

ikr
ED " —The S(8,¢) (49)
where
2
2 - k™ 4 n n -1ksin6(Ecosd+nsind)
5(0,9) = —+ [& x (&, x eoE)] fA e dgdn  (50)

is the vector scattering amplitude and where & is a unit vector in the

oE

direction of polarization of the incident electric vector.

Equation (50) applies to an aperture, but we are interested in
diffraction by a cylinder. Babinet's principle for an electromagnetic
wave states that the diffraction of a TE wave by an aperture is
equivalent to the diffraction of a TM wave by the aperture's complement.
Therefore, once the aperture diffraction problem is solved for both
polarization cases, the complementary problem is also solved.
Furthermore, we will assume that within the limits of the approximation,
the diffraction pattern of a perfectly opaque cylinder is equal to that
of a thin, perfectly conducting screen equal to the cylinder's projected
area.

To calculate the extinction efficiency, we need to know §(0), the

vector forward scattering amplitude. As 6 -+ O, ék +> 83 and (50) becomes

2

fﬂ(fn"ffff-"d‘

= -k n . n
S(0) = T [e3 X (e3 X eoE)] fA d&dn (51)
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APPENDIX B

CALCULATION OF §(0) FROM THE KIRCHOFF-KOTTLER
VECTOR DIFFRACTION RELATION
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2

,‘ Bouwkamp (1954, p. 58) provided the expression, derived from the
Kirchoff-Kottler formulation of Huygen's principle, for the field

¢

Lt diffracted by an aperture located in a thin, perfectly conducting
screen. Assuming the radiation is incident from the -z direction and
that the aperture is located in the plane z = 0, it is

. L 1 . o 1KR

N ED = 7 x - fAlﬂ X E]z_o —-R—dEdn

y.. L. ! _ 1R

. -7 x Vx ey fA[ﬁ X H]Z"O = dEdn (52)

.. where the variables are equal to those of Appendix A,

RS

. All of the general considerations of Appendix A and Figure 2 will

" again be used here. For an incident plane wave with the fields given by
E =Ee and H = H & _, the fields are related by
o o oE o o oH

'

i: _ L _

W Ho * X [ko X EO] (53)

|‘l

N

IE where eoE and eoH are unit vectors in the direction of polarization of
the incident electric and magnetic vectors, respectively, and Eo - ke3

> is the incident wave vector. As before, the values of the fields in the

5: aperture are taken to be those of the unperturbed incident wave; also,

U

:’ the Fraunhofer limit is taken to get

~

B

B

|“ _ E:()e:l.lcx' _

N ED Tke S(6,4) (54)
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where
- -kz - - -
5(6,6) = = {[ek x (&5 x & )]
- [ék x (ék X (63 x (63 x
and where

k*T' = ksinb(Ecosd + nsind)

92

--l. —"
tker d&dn

éoE)))l}IAE (55)

(56)

Babinet's principle is applied as in Appendix A.

Again, we desire to know 5(0).

8 +0, & é3, and consequently

k
- _k2
S5(0) = z;—{[e3 X (e3 x eoE)]
- [e3 x (e3 x (e3 X (e3
W4 f f.-’. Ll -'f‘-“ o J'.; Lo’ *‘.(\f‘-’\'.ﬂ'\'- f,, . LR \ ., -' q\q..vw

Analogously with Appendix A, as

x éoE)))]}fAdEdn (57)
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